forked from brando90/Generalization-Puzzles-in-Deep-Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathf_analysis.m
74 lines (74 loc) · 2.52 KB
/
f_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
nb_train_acts = numel(hist_all_train_norm);
nb_test_acts = numel(hist_all_test_norm);
%% train norm
fig0 = figure;
%hist_all_train_norm = reshape(hist_all_train_norm,[1 nb_train_acts]);
hist_all_train_norm = list_of_max_values(hist_all_train_norm);
histogram(hist_all_train_norm);
xlabel('f(x) value');
ylabel('counts/frequency');
title('histogram of f(x) for normalized net on train data MNIST');
fprintf('mean(hist_all_train_norm) = %f\n',mean(hist_all_train_norm));
fprintf('std(hist_all_train_norm) = %f\n',std(hist_all_train_norm));
%xlim([-0.06,0.06]);
xlim([0,0.06]);
%% test norm
fig1 = figure;
%hist_all_test_norm = reshape(hist_all_test_norm,[1 nb_test_acts]);
hist_all_test_norm = list_of_max_values(hist_all_test_norm);
histogram(hist_all_test_norm)
xlabel('f(x) value');
ylabel('counts/frequency');
title('histogram of f(x) for normalized net on test data MNIST');
fprintf('mean(hist_all_test_norm) = %f\n',mean(hist_all_test_norm));
fprintf('std(hist_all_test_norm) = %f\n',std(hist_all_test_norm));
%xlim([-0.06,0.06]);
xlim([0,0.06]);
%%
disp(' ');
%% train unnorm
fig2 = figure;
%hist_all_train_un = reshape(hist_all_train_un,[1 nb_train_acts]);
hist_all_train_un = list_of_max_values(hist_all_train_un);
histogram(hist_all_train_un)
xlabel('f(x) value');
ylabel('counts/frequency');
title('histogram of f(x) for unnormalized net on train data MNIST');
fprintf('mean(hist_all_train_un) = %f\n',mean(hist_all_train_un));
fprintf('std(hist_all_train_un) = %f\n',std(hist_all_train_un));
%xlim([-150,150]);
xlim([0,150]);
%% test unnorm
fig3 = figure;
%hist_all_test_un = reshape(hist_all_test_un,[1 nb_test_acts]);
hist_all_test_un = list_of_max_values(hist_all_test_un);
histogram(hist_all_test_un)
xlabel('f(x) value');
ylabel('counts/frequency');
title('histogram of f(x) for unnormalized net on test data MNIST');
fprintf('mean(hist_all_test_un) = %f\n',mean(hist_all_test_un));
fprintf('std(hist_all_test_un) = %f\n',std(hist_all_test_un));
%xlim([-150,150]);
xlim([0,150]);
%% save
saveas(fig0,'hist_all_train_norm');
saveas(fig0,'hist_all_train_norm','pdf');
%
saveas(fig1,'hist_all_test_norm');
saveas(fig1,'hist_all_test_norm','pdf');
%
saveas(fig2,'hist_all_train_un');
saveas(fig2,'hist_all_train_un','pdf');
%
saveas(fig3,'hist_all_test_un');
saveas(fig3,'hist_all_test_un','pdf');
%%
function [max_values] = list_of_max_values(list)
[nb_rows,~] = size(list);
max_values = zeros(nb_rows,1);
for row=1:nb_rows
confidence_f_x = list(row,:);
models_largest_confidence = max(confidence_f_x);
max_values(row) = models_largest_confidence;
end
end