-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.json
1 lines (1 loc) · 42.9 KB
/
example.json
1
{"uuid":"52c4ed85-8bdb-45ce-9cb7-3eb862508eaf","name":"Displaying LaTeX Formulas Inline","summary":"","created_at":"2024-11-16T03:27:23.226033+00:00","updated_at":"2024-11-16T03:58:15.380689+00:00","settings":{"preview_feature_uses_artifacts":true,"preview_feature_uses_latex":true,"preview_feature_uses_citations":true,"enabled_artifacts_attachments":true},"is_starred":false,"current_leaf_message_uuid":"fec88f05-68ae-48e0-9fd6-a78aa5d67066","chat_messages":[{"uuid":"e4cc6839-4621-439c-b90c-3f29c9ca2bca","text":"","content":[{"type":"text","text":"你的latex公式能紧跟着普通文本同一行后面显示吗"}],"sender":"human","index":0,"created_at":"2024-11-16T03:27:32.224987+00:00","updated_at":"2024-11-16T03:27:32.224987+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"00000000-0000-4000-8000-000000000000"},{"uuid":"82eaf14e-8bf5-4caf-a391-5df8fa1dd419","text":"","content":[{"type":"text","text":" 是的,我可以让LaTeX公式紧跟在普通文本后面显示。通过使用单个 $$...$$ 来包裹公式,就可以实现行内(inline)公式显示。让我给你演示几个例子:\n\n圆的面积公式是 $$A=πr^2$$,其中 $$r$$ 是圆的半径。\n\n勾股定理说直角三角形斜边的平方等于两条直角边的平方和: $$a^2 + b^2 = c^2$$\n\n质能方程 $$E=mc^2$$ 是爱因斯坦最著名的方程之一。\n\n如果要显示单独成行的公式(display模式),则使用独立的 $$ 行:\n\n$$\n\\frac{-b \\pm \\sqrt{b^2-4ac}}{2a}\n$$\n\n你看,行内公式可以很自然地融入到文字中,使文档更加流畅易读。需要我再举些其他例子吗?"}],"sender":"assistant","index":1,"created_at":"2024-11-16T03:27:32.224987+00:00","updated_at":"2024-11-16T03:27:32.224987+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"e4cc6839-4621-439c-b90c-3f29c9ca2bca"},{"uuid":"90e0dff9-799a-44ba-92cf-c675f42b92d1","text":"","content":[{"type":"text","text":"那引用文本呢?能紧跟着普通文本同一行后面显示吗"}],"sender":"human","index":2,"created_at":"2024-11-16T03:28:16.658545+00:00","updated_at":"2024-11-16T03:28:16.658545+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"82eaf14e-8bf5-4caf-a391-5df8fa1dd419"},{"uuid":"d7d8c049-3338-48d7-8017-3bcb9966e863","text":"","content":[{"type":"text","text":" 是的,通过使用 `>` 引用标记,我也可以在同一行内创建引用。比如:我最喜欢的一句话是 > 千里之行,始于足下。\n\n不过需要说明的是,Markdown中的引用块(blockquote)本来是设计用来创建独立段落的,更常见和标准的用法是另起一行,像这样:\n\n> 这是一个标准的引用块\n> 可以包含多行内容\n> 通常用来引用较长的文字\n\n如果你想在行内标记引用文本,可能更适合使用其他格式标记,比如:\n\n- 使用*斜体*: 我最喜欢的一句话是 *千里之行,始于足下*\n- 使用引号: 我最喜欢的一句话是\"千里之行,始于足下\"\n- 使用**粗体**: 我最喜欢的一句话是 **千里之行,始于足下**\n\n这些行内格式可能会比引用块更适合你的需求。你想用哪种方式来标记引用文本呢?"}],"sender":"assistant","index":3,"created_at":"2024-11-16T03:28:16.658545+00:00","updated_at":"2024-11-16T03:28:16.658545+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"90e0dff9-799a-44ba-92cf-c675f42b92d1"},{"uuid":"82fb1484-fabc-4a45-a4b0-1186623446c3","text":"","content":[{"type":"text","text":"你的latex公式另起一行的时候能分别左对齐、右对齐、居中吗"}],"sender":"human","index":4,"created_at":"2024-11-16T03:33:44.125787+00:00","updated_at":"2024-11-16T03:33:44.125787+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"d7d8c049-3338-48d7-8017-3bcb9966e863"},{"uuid":"e54585a0-522e-461d-996b-056dc2faf997","text":"","content":[{"type":"text","text":" 是的,我可以通过在LaTeX公式中使用不同的对齐命令来实现左对齐、右对齐和居中显示。让我演示一下:\n\n默认是居中对齐:\n$$\nE = mc^2\n$$\n\n左对齐(使用\\begin{flalign*}和&&):\n$$\n\\begin{flalign*}\n& E = mc^2 && \n\\end{flalign*}\n$$\n\n右对齐(使用\\begin{flalign*}和&&):\n$$\n\\begin{flalign*}\n&& E = mc^2 &\n\\end{flalign*}\n$$\n\n我也可以在一组公式中使用不同的对齐方式:\n\n左对齐的一组公式:\n$$\n\\begin{flalign*}\n& F = ma && \\\\\n& E = mc^2 && \\\\\n& p = mv &&\n\\end{flalign*}\n$$\n\n右对齐的一组公式:\n$$\n\\begin{flalign*}\n&& F = ma & \\\\\n&& E = mc^2 & \\\\\n&& p = mv &\n\\end{flalign*}\n$$\n\n居中的一组公式:\n$$\n\\begin{align*}\nF &= ma \\\\\nE &= mc^2 \\\\\np &= mv\n\\end{align*}\n$$\n\n需要我演示更多复杂的公式对齐案例吗?"}],"sender":"assistant","index":5,"created_at":"2024-11-16T03:33:44.125787+00:00","updated_at":"2024-11-16T03:33:44.125787+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"82fb1484-fabc-4a45-a4b0-1186623446c3"},{"uuid":"450e0080-2e6b-4f06-9fa0-6889de5cb500","text":"","content":[{"type":"text","text":"你能尽你所能输出一段很长代码吗?内容不限"}],"sender":"human","index":6,"created_at":"2024-11-16T03:38:30.936719+00:00","updated_at":"2024-11-16T03:38:30.936719+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"e54585a0-522e-461d-996b-056dc2faf997"},{"uuid":"c5969f55-be5e-4df8-a671-9a518cf8fbb8","text":"","content":[{"type":"text","text":" 我会创建一个相对复杂的Python类,实现一个带有多种功能的自定义数据结构。\n\n"},{"type":"tool_use","name":"artifacts","input":{"id":"advanced-data-structure","type":"application/vnd.ant.code","title":"Advanced Data Structure Implementation","command":"create","content":"from typing import Any, Optional, Iterator, List, Dict, Set\nfrom collections import deque\nimport heapq\nimport time\nfrom datetime import datetime\nimport threading\nimport logging\n\nlogging.basicConfig(level=logging.INFO)\nlogger = logging.getLogger(__name__)\n\nclass CacheItem:\n def __init__(self, value: Any, expire_time: Optional[float] = None):\n self.value = value\n self.expire_time = expire_time\n self.access_count = 0\n self.last_access_time = time.time()\n\nclass AdvancedCache:\n \"\"\"\n A sophisticated cache implementation with the following features:\n - LRU (Least Recently Used) eviction\n - TTL (Time To Live) support\n - Size limits\n - Access counting\n - Thread safety\n - Auto cleanup\n - Statistics tracking\n - Bulk operations\n - Event callbacks\n \"\"\"\n \n def __init__(self, \n max_size: int = 1000,\n default_ttl: Optional[int] = None,\n cleanup_interval: int = 60):\n self._cache: Dict[str, CacheItem] = {}\n self._max_size = max_size\n self._default_ttl = default_ttl\n self._access_lock = threading.Lock()\n self._cleanup_lock = threading.Lock()\n self._statistics: Dict[str, int] = {\n \"hits\": 0,\n \"misses\": 0,\n \"evictions\": 0,\n \"expirations\": 0\n }\n self._callbacks: Dict[str, List[callable]] = {\n \"on_add\": [],\n \"on_remove\": [],\n \"on_access\": []\n }\n \n # Start cleanup thread\n self._stop_cleanup = False\n self._cleanup_thread = threading.Thread(target=self._cleanup_loop,\n args=(cleanup_interval,))\n self._cleanup_thread.daemon = True\n self._cleanup_thread.start()\n \n logger.info(f\"Initialized cache with max_size={max_size}, \"\n f\"default_ttl={default_ttl}\")\n\n def __del__(self):\n \"\"\"Cleanup when object is destroyed\"\"\"\n self._stop_cleanup = True\n self._cleanup_thread.join()\n\n def add(self, key: str, value: Any, ttl: Optional[int] = None) -> None:\n \"\"\"Add an item to the cache with optional TTL\"\"\"\n with self._access_lock:\n # Calculate expiration time\n expire_time = None\n if ttl is not None or self._default_ttl is not None:\n expire_time = time.time() + (ttl or self._default_ttl)\n \n # Create cache item\n item = CacheItem(value, expire_time)\n \n # Check size limit\n if len(self._cache) >= self._max_size:\n self._evict_lru()\n \n # Add item\n self._cache[key] = item\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_add\", key, value)\n \n logger.debug(f\"Added key '{key}' to cache\")\n\n def get(self, key: str, default: Any = None) -> Any:\n \"\"\"Retrieve an item from the cache\"\"\"\n with self._access_lock:\n item = self._cache.get(key)\n \n if item is None:\n self._statistics[\"misses\"] += 1\n return default\n \n # Check expiration\n if item.expire_time and time.time() > item.expire_time:\n self._statistics[\"expirations\"] += 1\n del self._cache[key]\n return default\n \n # Update access metadata\n item.access_count += 1\n item.last_access_time = time.time()\n self._statistics[\"hits\"] += 1\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_access\", key, item.value)\n \n return item.value\n\n def remove(self, key: str) -> None:\n \"\"\"Remove an item from the cache\"\"\"\n with self._access_lock:\n if key in self._cache:\n value = self._cache[key].value\n del self._cache[key]\n self._trigger_callbacks(\"on_remove\", key, value)\n logger.debug(f\"Removed key '{key}' from cache\")\n\n def clear(self) -> None:\n \"\"\"Clear all items from the cache\"\"\"\n with self._access_lock:\n self._cache.clear()\n logger.info(\"Cache cleared\")\n\n def get_stats(self) -> Dict[str, int]:\n \"\"\"Get cache statistics\"\"\"\n with self._access_lock:\n stats = self._statistics.copy()\n stats[\"size\"] = len(self._cache)\n return stats\n\n def add_callback(self, event: str, callback: callable) -> None:\n \"\"\"Add a callback for specific events\"\"\"\n if event in self._callbacks:\n self._callbacks[event].append(callback)\n\n def bulk_add(self, items: Dict[str, Any], ttl: Optional[int] = None) -> None:\n \"\"\"Add multiple items to the cache at once\"\"\"\n for key, value in items.items():\n self.add(key, value, ttl)\n\n def get_all(self, keys: List[str]) -> Dict[str, Any]:\n \"\"\"Get multiple items from the cache at once\"\"\"\n return {key: self.get(key) for key in keys}\n\n def get_expired_keys(self) -> Set[str]:\n \"\"\"Get all expired keys\"\"\"\n now = time.time()\n with self._access_lock:\n return {\n key for key, item in self._cache.items()\n if item.expire_time and now > item.expire_time\n }\n\n def get_least_accessed(self, n: int = 1) -> List[str]:\n \"\"\"Get the n least accessed keys\"\"\"\n with self._access_lock:\n items = [(item.access_count, key) \n for key, item in self._cache.items()]\n return [key for _, key in heapq.nsmallest(n, items)]\n\n def _evict_lru(self) -> None:\n \"\"\"Evict the least recently used item\"\"\"\n if not self._cache:\n return\n \n # Find least recently used item\n lru_key = min(self._cache.items(),\n key=lambda x: x[1].last_access_time)[0]\n \n # Remove it\n self.remove(lru_key)\n self._statistics[\"evictions\"] += 1\n \n logger.debug(f\"Evicted LRU key '{lru_key}'\")\n\n def _cleanup_loop(self, interval: int) -> None:\n \"\"\"Background cleanup loop\"\"\"\n while not self._stop_cleanup:\n time.sleep(interval)\n \n with self._cleanup_lock:\n # Get expired keys\n expired = self.get_expired_keys()\n \n # Remove them\n for key in expired:\n self.remove(key)\n \n if expired:\n logger.info(f\"Cleaned up {len(expired)} expired items\")\n\n def _trigger_callbacks(self, event: str, key: str, value: Any) -> None:\n \"\"\"Trigger all callbacks for an event\"\"\"\n for callback in self._callbacks[event]:\n try:\n callback(key, value)\n except Exception as e:\n logger.error(f\"Callback error for {event}: {e}\")\n\n def __len__(self) -> int:\n \"\"\"Get number of items in cache\"\"\"\n return len(self._cache)\n\n def __contains__(self, key: str) -> bool:\n \"\"\"Check if key exists in cache\"\"\"\n return key in self._cache\n\n def __iter__(self) -> Iterator[str]:\n \"\"\"Iterate over cache keys\"\"\"\n return iter(self._cache)\n\n def __str__(self) -> str:\n \"\"\"String representation\"\"\"\n return f\"AdvancedCache(size={len(self)}, max_size={self._max_size})\"\n\n# Example usage\nif __name__ == \"__main__\":\n # Create cache instance\n cache = AdvancedCache(max_size=100, default_ttl=3600)\n\n # Add some items\n cache.add(\"key1\", \"value1\")\n cache.add(\"key2\", \"value2\", ttl=60) # Expires in 60 seconds\n\n # Add callbacks\n cache.add_callback(\"on_access\", lambda k, v: print(f\"Accessed: {k}={v}\"))\n cache.add_callback(\"on_remove\", lambda k, v: print(f\"Removed: {k}={v}\"))\n\n # Bulk operations\n cache.bulk_add({\n \"key3\": \"value3\",\n \"key4\": \"value4\"\n })\n\n # Get values\n print(cache.get(\"key1\")) # Prints: value1\n print(cache.get(\"nonexistent\")) # Prints: None\n\n # Get statistics\n print(cache.get_stats())\n\n # Wait for cleanup\n time.sleep(61) # Wait for key2 to expire\n print(\"key2 in cache:\", \"key2\" in cache) # Should be False\n\n # Get least accessed keys\n print(\"Least accessed:\", cache.get_least_accessed(2))\n\n # Clear cache\n cache.clear()\n","language":"python","version_uuid":"6ca48967-867e-4e66-ae89-efb0eb16ea89"}},{"type":"tool_result","name":"artifacts","content":[{"type":"text","text":"OK"}],"is_error":false},{"type":"text","text":"\n\n这段代码展示了一个功能丰富的缓存实现,包含以下特性:\n1. LRU(最近最少使用)淘汰策略\n2. TTL(生存时间)支持\n3. 大小限制\n4. 访问计数\n5. 线程安全\n6. 自动清理\n7. 统计跟踪\n8. 批量操作\n9. 事件回调\n10. 完整的类型注解\n11. 错误处理\n12. 日志记录\n\n这个实现不仅展示了 Python 的多种高级特性,还体现了良好的软件工程实践。需要我详细解释其中的任何部分吗?"}],"sender":"assistant","index":7,"created_at":"2024-11-16T03:38:30.936719+00:00","updated_at":"2024-11-16T03:38:30.936719+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"450e0080-2e6b-4f06-9fa0-6889de5cb500"},{"uuid":"207e54b8-ad40-4c9b-b71a-645554eb5922","text":"","content":[{"type":"text","text":"简单说下你看到了什么"}],"sender":"human","index":8,"created_at":"2024-11-16T03:44:59.259183+00:00","updated_at":"2024-11-16T03:44:59.259183+00:00","truncated":false,"attachments":[],"files":[{"file_kind":"image","file_uuid":"8094cc1f-1ff0-4785-94c5-8efb80f9d937","file_name":"image.png","created_at":"2024-11-16T03:44:47.835011+00:00","thumbnail_url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/thumbnail","preview_url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/preview","thumbnail_asset":{"url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/thumbnail","file_variant":"thumbnail","primary_color":"ffffff","image_width":400,"image_height":93},"preview_asset":{"url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/preview","file_variant":"preview","primary_color":"ffffff","image_width":621,"image_height":145}}],"files_v2":[{"file_kind":"image","file_uuid":"8094cc1f-1ff0-4785-94c5-8efb80f9d937","file_name":"image.png","created_at":"2024-11-16T03:44:47.835011+00:00","thumbnail_url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/thumbnail","preview_url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/preview","thumbnail_asset":{"url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/thumbnail","file_variant":"thumbnail","primary_color":"ffffff","image_width":400,"image_height":93},"preview_asset":{"url":"/api/a240c10a-9f81-4b81-ad32-6a1a505f22ed/files/8094cc1f-1ff0-4785-94c5-8efb80f9d937/preview","file_variant":"preview","primary_color":"ffffff","image_width":621,"image_height":145}}],"sync_sources":[],"parent_message_uuid":"c5969f55-be5e-4df8-a671-9a518cf8fbb8"},{"uuid":"0e6beee9-8229-40ae-a1b2-e26a7ef9df3b","text":"","content":[{"type":"text","text":" 我看到了一个截图,这个截图显示了此前我对用户说过的一句话:\"我会创建一个相对复杂的Python类,实现一个带有多种功能的自定义数据结构。\"\n\n这是在之前的对话中,我准备展示一段较长的代码时的开场白。从截图中可以看到这句话使用了中文,是对即将展示的代码内容的一个简短介绍。\n\n截图的左上角还标注了\"AI\",表明这是AI(也就是我)的回复内容。"}],"sender":"assistant","index":9,"created_at":"2024-11-16T03:44:59.259183+00:00","updated_at":"2024-11-16T03:44:59.259183+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"207e54b8-ad40-4c9b-b71a-645554eb5922"},{"uuid":"6414f718-0f76-48c5-abc5-e46f6fcb8272","text":"","content":[{"type":"text","text":"简单说下你看到了什么"}],"sender":"human","index":10,"created_at":"2024-11-16T03:46:30.778651+00:00","updated_at":"2024-11-16T03:46:30.778651+00:00","truncated":false,"attachments":[{"id":"fa636494-45b8-431f-aeae-c8921095ab3e","file_name":"line-wrapper-simple.py","file_size":1181,"file_type":"text/x-python","extracted_content":"#!/usr/bin/env python3\nimport sys\n\ndef wrap_long_lines(input_file, max_width=85):\n \"\"\"\n 简单地处理长行,超过指定宽度就换行\n \"\"\"\n output_file = input_file.rsplit('.', 1)[0] + '.txt'\n \n with open(input_file, 'r', encoding='utf-8') as f_in:\n with open(output_file, 'w', encoding='utf-8') as f_out:\n for line in f_in:\n # 去掉行尾的换行符\n line = line.rstrip()\n \n # 如果行长度超过最大宽度,进行分割\n while len(line) > max_width:\n f_out.write(line[:max_width] + '\\n')\n line = line[max_width:]\n \n # 写入剩余部分\n if line:\n f_out.write(line + '\\n')\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print(\"使用方法: python script.py <输入文件> [最大宽度]\")\n sys.exit(1)\n \n input_file = sys.argv[1]\n max_width = int(sys.argv[2]) if len(sys.argv) > 2 else 85\n \n wrap_long_lines(input_file, max_width)\n print(f\"已处理完成,输出文件为: {input_file.rsplit('.', 1)[0]}.txt\")\n","created_at":"2024-11-16T03:46:30.778651+00:00"}],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"0e6beee9-8229-40ae-a1b2-e26a7ef9df3b"},{"uuid":"31334cb8-eb43-49b2-bb1a-704fd5ae2296","text":"","content":[{"type":"text","text":" 这是一个用Python编写的文本行包装脚本(line-wrapper-simple.py)。主要功能是将过长的文本行按照指定的最大宽度进行换行处理。\n\n核心功能包括:\n1. 默认最大宽度是85个字符\n2. 输入文件会被处理成同名的.txt输出文件(比如input.doc会输出为input.txt)\n3. 当遇到超过最大宽度的行时,会简单地按照最大宽度进行切分并换行\n4. 支持通过命令行参数指定输入文件和最大宽度\n\n使用方式是:\n```\npython script.py <输入文件> [最大宽度]\n```\n\n这是一个相对简单的实现,它只是机械地按照字符数进行切分,没有考虑单词边界或其他更复杂的排版规则。"}],"sender":"assistant","index":11,"created_at":"2024-11-16T03:46:30.778651+00:00","updated_at":"2024-11-16T03:46:30.778651+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"6414f718-0f76-48c5-abc5-e46f6fcb8272"},{"uuid":"56402bc1-2d05-460e-a6d8-16a8512c195d","text":"","content":[{"type":"text","text":"我在什么中使用呢,bash能用吗,如果能用,请给我重新输出一下使用方法代码段"}],"sender":"human","index":12,"created_at":"2024-11-16T03:48:36.367371+00:00","updated_at":"2024-11-16T03:48:36.367371+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"31334cb8-eb43-49b2-bb1a-704fd5ae2296"},{"uuid":"36de8a4c-596e-42cc-b93c-aa34468be3bb","text":"","content":[{"type":"text","text":" 是的,这个脚本可以在bash中使用。由于它使用了 `#!/usr/bin/env python3` 这个 shebang,我们有两种方式可以在bash中运行它:\n\n```bash\n# 方法1:直接用 python 运行\npython3 line-wrapper-simple.py <输入文件> [最大宽度]\n\n# 方法2:先赋予执行权限,然后直接运行\nchmod +x line-wrapper-simple.py\n./line-wrapper-simple.py <输入文件> [最大宽度]\n```\n\n例如,如果你要处理一个名为 article.md 的文件,并希望每行最多80个字符:\n```bash\n# 使用方法1\npython3 line-wrapper-simple.py article.md 80\n\n# 或使用方法2\nchmod +x line-wrapper-simple.py\n./line-wrapper-simple.py article.md 80\n```\n\n如果不指定最大宽度,默认使用85个字符:\n```bash\n./line-wrapper-simple.py article.md\n```"}],"sender":"assistant","index":13,"created_at":"2024-11-16T03:48:36.367371+00:00","updated_at":"2024-11-16T03:48:36.367371+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"56402bc1-2d05-460e-a6d8-16a8512c195d"},{"uuid":"a1cd5ecc-08b9-41bc-bc69-0dfb5a598242","text":"","content":[{"type":"text","text":"你能输出这样的消息形式吗:\n1、有序列表1\n刚刚那段创建一个相对复杂的Python类代码\n2、有序列表2"}],"sender":"human","index":14,"created_at":"2024-11-16T03:54:12.212930+00:00","updated_at":"2024-11-16T03:54:12.212930+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"36de8a4c-596e-42cc-b93c-aa34468be3bb"},{"uuid":"af4d0c86-b03d-401a-b9a6-bb0a400e0685","text":"","content":[{"type":"text","text":" 1. 有序列表1"},{"type":"tool_use","name":"artifacts","input":{"id":"advanced-data-structure","type":"application/vnd.ant.code","title":"Advanced Data Structure Implementation","command":"create","content":"from typing import Any, Optional, Iterator, List, Dict, Set\nfrom collections import deque\nimport heapq\nimport time\nfrom datetime import datetime\nimport threading\nimport logging\n\nlogging.basicConfig(level=logging.INFO)\nlogger = logging.getLogger(__name__)\n\nclass CacheItem:\n def __init__(self, value: Any, expire_time: Optional[float] = None):\n self.value = value\n self.expire_time = expire_time\n self.access_count = 0\n self.last_access_time = time.time()\n\nclass AdvancedCache:\n \"\"\"\n A sophisticated cache implementation with the following features:\n - LRU (Least Recently Used) eviction\n - TTL (Time To Live) support\n - Size limits\n - Access counting\n - Thread safety\n - Auto cleanup\n - Statistics tracking\n - Bulk operations\n - Event callbacks\n \"\"\"\n \n def __init__(self, \n max_size: int = 1000,\n default_ttl: Optional[int] = None,\n cleanup_interval: int = 60):\n self._cache: Dict[str, CacheItem] = {}\n self._max_size = max_size\n self._default_ttl = default_ttl\n self._access_lock = threading.Lock()\n self._cleanup_lock = threading.Lock()\n self._statistics: Dict[str, int] = {\n \"hits\": 0,\n \"misses\": 0,\n \"evictions\": 0,\n \"expirations\": 0\n }\n self._callbacks: Dict[str, List[callable]] = {\n \"on_add\": [],\n \"on_remove\": [],\n \"on_access\": []\n }\n \n # Start cleanup thread\n self._stop_cleanup = False\n self._cleanup_thread = threading.Thread(target=self._cleanup_loop,\n args=(cleanup_interval,))\n self._cleanup_thread.daemon = True\n self._cleanup_thread.start()\n \n logger.info(f\"Initialized cache with max_size={max_size}, \"\n f\"default_ttl={default_ttl}\")\n\n def __del__(self):\n \"\"\"Cleanup when object is destroyed\"\"\"\n self._stop_cleanup = True\n self._cleanup_thread.join()\n\n def add(self, key: str, value: Any, ttl: Optional[int] = None) -> None:\n \"\"\"Add an item to the cache with optional TTL\"\"\"\n with self._access_lock:\n # Calculate expiration time\n expire_time = None\n if ttl is not None or self._default_ttl is not None:\n expire_time = time.time() + (ttl or self._default_ttl)\n \n # Create cache item\n item = CacheItem(value, expire_time)\n \n # Check size limit\n if len(self._cache) >= self._max_size:\n self._evict_lru()\n \n # Add item\n self._cache[key] = item\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_add\", key, value)\n \n logger.debug(f\"Added key '{key}' to cache\")\n\n def get(self, key: str, default: Any = None) -> Any:\n \"\"\"Retrieve an item from the cache\"\"\"\n with self._access_lock:\n item = self._cache.get(key)\n \n if item is None:\n self._statistics[\"misses\"] += 1\n return default\n \n # Check expiration\n if item.expire_time and time.time() > item.expire_time:\n self._statistics[\"expirations\"] += 1\n del self._cache[key]\n return default\n \n # Update access metadata\n item.access_count += 1\n item.last_access_time = time.time()\n self._statistics[\"hits\"] += 1\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_access\", key, item.value)\n \n return item.value\n\n def remove(self, key: str) -> None:\n \"\"\"Remove an item from the cache\"\"\"\n with self._access_lock:\n if key in self._cache:\n value = self._cache[key].value\n del self._cache[key]\n self._trigger_callbacks(\"on_remove\", key, value)\n logger.debug(f\"Removed key '{key}' from cache\")\n\n def clear(self) -> None:\n \"\"\"Clear all items from the cache\"\"\"\n with self._access_lock:\n self._cache.clear()\n logger.info(\"Cache cleared\")\n\n def get_stats(self) -> Dict[str, int]:\n \"\"\"Get cache statistics\"\"\"\n with self._access_lock:\n stats = self._statistics.copy()\n stats[\"size\"] = len(self._cache)\n return stats\n\n def add_callback(self, event: str, callback: callable) -> None:\n \"\"\"Add a callback for specific events\"\"\"\n if event in self._callbacks:\n self._callbacks[event].append(callback)\n\n def bulk_add(self, items: Dict[str, Any], ttl: Optional[int] = None) -> None:\n \"\"\"Add multiple items to the cache at once\"\"\"\n for key, value in items.items():\n self.add(key, value, ttl)\n\n def get_all(self, keys: List[str]) -> Dict[str, Any]:\n \"\"\"Get multiple items from the cache at once\"\"\"\n return {key: self.get(key) for key in keys}\n\n def get_expired_keys(self) -> Set[str]:\n \"\"\"Get all expired keys\"\"\"\n now = time.time()\n with self._access_lock:\n return {\n key for key, item in self._cache.items()\n if item.expire_time and now > item.expire_time\n }\n\n def get_least_accessed(self, n: int = 1) -> List[str]:\n \"\"\"Get the n least accessed keys\"\"\"\n with self._access_lock:\n items = [(item.access_count, key) \n for key, item in self._cache.items()]\n return [key for _, key in heapq.nsmallest(n, items)]\n\n def _evict_lru(self) -> None:\n \"\"\"Evict the least recently used item\"\"\"\n if not self._cache:\n return\n \n # Find least recently used item\n lru_key = min(self._cache.items(),\n key=lambda x: x[1].last_access_time)[0]\n \n # Remove it\n self.remove(lru_key)\n self._statistics[\"evictions\"] += 1\n \n logger.debug(f\"Evicted LRU key '{lru_key}'\")\n\n def _cleanup_loop(self, interval: int) -> None:\n \"\"\"Background cleanup loop\"\"\"\n while not self._stop_cleanup:\n time.sleep(interval)\n \n with self._cleanup_lock:\n # Get expired keys\n expired = self.get_expired_keys()\n \n # Remove them\n for key in expired:\n self.remove(key)\n \n if expired:\n logger.info(f\"Cleaned up {len(expired)} expired items\")\n\n def _trigger_callbacks(self, event: str, key: str, value: Any) -> None:\n \"\"\"Trigger all callbacks for an event\"\"\"\n for callback in self._callbacks[event]:\n try:\n callback(key, value)\n except Exception as e:\n logger.error(f\"Callback error for {event}: {e}\")\n\n def __len__(self) -> int:\n \"\"\"Get number of items in cache\"\"\"\n return len(self._cache)\n\n def __contains__(self, key: str) -> bool:\n \"\"\"Check if key exists in cache\"\"\"\n return key in self._cache\n\n def __iter__(self) -> Iterator[str]:\n \"\"\"Iterate over cache keys\"\"\"\n return iter(self._cache)\n\n def __str__(self) -> str:\n \"\"\"String representation\"\"\"\n return f\"AdvancedCache(size={len(self)}, max_size={self._max_size})\"\n\n# Example usage\nif __name__ == \"__main__\":\n # Create cache instance\n cache = AdvancedCache(max_size=100, default_ttl=3600)\n\n # Add some items\n cache.add(\"key1\", \"value1\")\n cache.add(\"key2\", \"value2\", ttl=60) # Expires in 60 seconds\n\n # Add callbacks\n cache.add_callback(\"on_access\", lambda k, v: print(f\"Accessed: {k}={v}\"))\n cache.add_callback(\"on_remove\", lambda k, v: print(f\"Removed: {k}={v}\"))\n\n # Bulk operations\n cache.bulk_add({\n \"key3\": \"value3\",\n \"key4\": \"value4\"\n })\n\n # Get values\n print(cache.get(\"key1\")) # Prints: value1\n print(cache.get(\"nonexistent\")) # Prints: None\n\n # Get statistics\n print(cache.get_stats())\n\n # Wait for cleanup\n time.sleep(61) # Wait for key2 to expire\n print(\"key2 in cache:\", \"key2\" in cache) # Should be False\n\n # Get least accessed keys\n print(\"Least accessed:\", cache.get_least_accessed(2))\n\n # Clear cache\n cache.clear()\n","language":"python","version_uuid":"d72f6e70-1a54-4412-9288-714e86c446c5"}},{"type":"tool_result","name":"artifacts","content":[{"type":"text","text":"OK"}],"is_error":false},{"type":"text","text":"\n\n2. 有序列表2"}],"sender":"assistant","index":15,"created_at":"2024-11-16T03:54:12.212930+00:00","updated_at":"2024-11-16T03:54:12.212930+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"a1cd5ecc-08b9-41bc-bc69-0dfb5a598242"},{"uuid":"3b32d744-2cf3-40b4-b7cb-2772d7c40820","text":"","content":[{"type":"text","text":"你能输出这样的消息形式吗(前后都不要有任何其他普通或特殊文本):\n刚刚那段创建一个相对复杂的Python类代码"}],"sender":"human","index":16,"created_at":"2024-11-16T03:58:15.380689+00:00","updated_at":"2024-11-16T03:58:15.380689+00:00","truncated":false,"attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"af4d0c86-b03d-401a-b9a6-bb0a400e0685"},{"uuid":"fec88f05-68ae-48e0-9fd6-a78aa5d67066","text":"","content":[{"type":"text","text":" "},{"type":"tool_use","name":"artifacts","input":{"id":"advanced-data-structure","type":"application/vnd.ant.code","title":"Advanced Data Structure Implementation","command":"create","content":"from typing import Any, Optional, Iterator, List, Dict, Set\nfrom collections import deque\nimport heapq\nimport time\nfrom datetime import datetime\nimport threading\nimport logging\n\nlogging.basicConfig(level=logging.INFO)\nlogger = logging.getLogger(__name__)\n\nclass CacheItem:\n def __init__(self, value: Any, expire_time: Optional[float] = None):\n self.value = value\n self.expire_time = expire_time\n self.access_count = 0\n self.last_access_time = time.time()\n\nclass AdvancedCache:\n \"\"\"\n A sophisticated cache implementation with the following features:\n - LRU (Least Recently Used) eviction\n - TTL (Time To Live) support\n - Size limits\n - Access counting\n - Thread safety\n - Auto cleanup\n - Statistics tracking\n - Bulk operations\n - Event callbacks\n \"\"\"\n \n def __init__(self, \n max_size: int = 1000,\n default_ttl: Optional[int] = None,\n cleanup_interval: int = 60):\n self._cache: Dict[str, CacheItem] = {}\n self._max_size = max_size\n self._default_ttl = default_ttl\n self._access_lock = threading.Lock()\n self._cleanup_lock = threading.Lock()\n self._statistics: Dict[str, int] = {\n \"hits\": 0,\n \"misses\": 0,\n \"evictions\": 0,\n \"expirations\": 0\n }\n self._callbacks: Dict[str, List[callable]] = {\n \"on_add\": [],\n \"on_remove\": [],\n \"on_access\": []\n }\n \n # Start cleanup thread\n self._stop_cleanup = False\n self._cleanup_thread = threading.Thread(target=self._cleanup_loop,\n args=(cleanup_interval,))\n self._cleanup_thread.daemon = True\n self._cleanup_thread.start()\n \n logger.info(f\"Initialized cache with max_size={max_size}, \"\n f\"default_ttl={default_ttl}\")\n\n def __del__(self):\n \"\"\"Cleanup when object is destroyed\"\"\"\n self._stop_cleanup = True\n self._cleanup_thread.join()\n\n def add(self, key: str, value: Any, ttl: Optional[int] = None) -> None:\n \"\"\"Add an item to the cache with optional TTL\"\"\"\n with self._access_lock:\n # Calculate expiration time\n expire_time = None\n if ttl is not None or self._default_ttl is not None:\n expire_time = time.time() + (ttl or self._default_ttl)\n \n # Create cache item\n item = CacheItem(value, expire_time)\n \n # Check size limit\n if len(self._cache) >= self._max_size:\n self._evict_lru()\n \n # Add item\n self._cache[key] = item\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_add\", key, value)\n \n logger.debug(f\"Added key '{key}' to cache\")\n\n def get(self, key: str, default: Any = None) -> Any:\n \"\"\"Retrieve an item from the cache\"\"\"\n with self._access_lock:\n item = self._cache.get(key)\n \n if item is None:\n self._statistics[\"misses\"] += 1\n return default\n \n # Check expiration\n if item.expire_time and time.time() > item.expire_time:\n self._statistics[\"expirations\"] += 1\n del self._cache[key]\n return default\n \n # Update access metadata\n item.access_count += 1\n item.last_access_time = time.time()\n self._statistics[\"hits\"] += 1\n \n # Trigger callbacks\n self._trigger_callbacks(\"on_access\", key, item.value)\n \n return item.value\n\n def remove(self, key: str) -> None:\n \"\"\"Remove an item from the cache\"\"\"\n with self._access_lock:\n if key in self._cache:\n value = self._cache[key].value\n del self._cache[key]\n self._trigger_callbacks(\"on_remove\", key, value)\n logger.debug(f\"Removed key '{key}' from cache\")\n\n def clear(self) -> None:\n \"\"\"Clear all items from the cache\"\"\"\n with self._access_lock:\n self._cache.clear()\n logger.info(\"Cache cleared\")\n\n def get_stats(self) -> Dict[str, int]:\n \"\"\"Get cache statistics\"\"\"\n with self._access_lock:\n stats = self._statistics.copy()\n stats[\"size\"] = len(self._cache)\n return stats\n\n def add_callback(self, event: str, callback: callable) -> None:\n \"\"\"Add a callback for specific events\"\"\"\n if event in self._callbacks:\n self._callbacks[event].append(callback)\n\n def bulk_add(self, items: Dict[str, Any], ttl: Optional[int] = None) -> None:\n \"\"\"Add multiple items to the cache at once\"\"\"\n for key, value in items.items():\n self.add(key, value, ttl)\n\n def get_all(self, keys: List[str]) -> Dict[str, Any]:\n \"\"\"Get multiple items from the cache at once\"\"\"\n return {key: self.get(key) for key in keys}\n\n def get_expired_keys(self) -> Set[str]:\n \"\"\"Get all expired keys\"\"\"\n now = time.time()\n with self._access_lock:\n return {\n key for key, item in self._cache.items()\n if item.expire_time and now > item.expire_time\n }\n\n def get_least_accessed(self, n: int = 1) -> List[str]:\n \"\"\"Get the n least accessed keys\"\"\"\n with self._access_lock:\n items = [(item.access_count, key) \n for key, item in self._cache.items()]\n return [key for _, key in heapq.nsmallest(n, items)]\n\n def _evict_lru(self) -> None:\n \"\"\"Evict the least recently used item\"\"\"\n if not self._cache:\n return\n \n # Find least recently used item\n lru_key = min(self._cache.items(),\n key=lambda x: x[1].last_access_time)[0]\n \n # Remove it\n self.remove(lru_key)\n self._statistics[\"evictions\"] += 1\n \n logger.debug(f\"Evicted LRU key '{lru_key}'\")\n\n def _cleanup_loop(self, interval: int) -> None:\n \"\"\"Background cleanup loop\"\"\"\n while not self._stop_cleanup:\n time.sleep(interval)\n \n with self._cleanup_lock:\n # Get expired keys\n expired = self.get_expired_keys()\n \n # Remove them\n for key in expired:\n self.remove(key)\n \n if expired:\n logger.info(f\"Cleaned up {len(expired)} expired items\")\n\n def _trigger_callbacks(self, event: str, key: str, value: Any) -> None:\n \"\"\"Trigger all callbacks for an event\"\"\"\n for callback in self._callbacks[event]:\n try:\n callback(key, value)\n except Exception as e:\n logger.error(f\"Callback error for {event}: {e}\")\n\n def __len__(self) -> int:\n \"\"\"Get number of items in cache\"\"\"\n return len(self._cache)\n\n def __contains__(self, key: str) -> bool:\n \"\"\"Check if key exists in cache\"\"\"\n return key in self._cache\n\n def __iter__(self) -> Iterator[str]:\n \"\"\"Iterate over cache keys\"\"\"\n return iter(self._cache)\n\n def __str__(self) -> str:\n \"\"\"String representation\"\"\"\n return f\"AdvancedCache(size={len(self)}, max_size={self._max_size})\"\n\n# Example usage\nif __name__ == \"__main__\":\n # Create cache instance\n cache = AdvancedCache(max_size=100, default_ttl=3600)\n\n # Add some items\n cache.add(\"key1\", \"value1\")\n cache.add(\"key2\", \"value2\", ttl=60) # Expires in 60 seconds\n\n # Add callbacks\n cache.add_callback(\"on_access\", lambda k, v: print(f\"Accessed: {k}={v}\"))\n cache.add_callback(\"on_remove\", lambda k, v: print(f\"Removed: {k}={v}\"))\n\n # Bulk operations\n cache.bulk_add({\n \"key3\": \"value3\",\n \"key4\": \"value4\"\n })\n\n # Get values\n print(cache.get(\"key1\")) # Prints: value1\n print(cache.get(\"nonexistent\")) # Prints: None\n\n # Get statistics\n print(cache.get_stats())\n\n # Wait for cleanup\n time.sleep(61) # Wait for key2 to expire\n print(\"key2 in cache:\", \"key2\" in cache) # Should be False\n\n # Get least accessed keys\n print(\"Least accessed:\", cache.get_least_accessed(2))\n\n # Clear cache\n cache.clear()\n","language":"python","version_uuid":"07bfebb5-9f6b-4259-9d6e-2248c0ae1742"}},{"type":"tool_result","name":"artifacts","content":[{"type":"text","text":"OK"}],"is_error":false}],"sender":"assistant","index":17,"created_at":"2024-11-16T03:58:15.380689+00:00","updated_at":"2024-11-16T03:58:15.380689+00:00","truncated":false,"stop_reason":"stop_sequence","attachments":[],"files":[],"files_v2":[],"sync_sources":[],"parent_message_uuid":"3b32d744-2cf3-40b4-b7cb-2772d7c40820"}]}