Skip to content

Latest commit

 

History

History
261 lines (203 loc) · 10.7 KB

单表操作.md

File metadata and controls

261 lines (203 loc) · 10.7 KB

django的orm支持多种数据库

1、在settings.py中设置DATABASES变量

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql', # 使用mysql数据库
        'NAME': 'db1',          # 要连接的数据库
        'USER': 'root',         # 链接数据库的用于名
        'PASSWORD': '',         # 链接数据库的用于名                  
        'HOST': '127.0.0.1',    # mysql服务监听的ip  
        'PORT': 3306,           # mysql服务监听的端口  
        'ATOMIC_REQUEST': True, #设置为True代表同一个http请求所对应的所有sql都放在一个事务中执行 
                                #(要么所有都成功,要么所有都失败),这是全局性的配置,如果要对某个
                                #http请求放水(然后自定义事务),可以用non_atomic_requests修饰器 
        'OPTIONS': {
            "init_command": "SET storage_engine=INNODB", #设置创建表的存储引擎为INNODB
        }
    }
}

2、在链接mysql数据之前,必须事先创建好数据库

mysql> create database db1; # 数据库名必须与settings.py中指定的名字对应上

3、在项目目录下的__init_文件中添加

import pymysql
pymysql.intall_as_MySQLdb()

4、Settings.py中INSTALLED_APPS中添加APP

django.apps.PollsConfig# PollsConfig 根据app目录中apps.py中类的名字

5、如果想打印orm转换过程中的sql,需要在settings中进行配置日志

LOGGING = {
    'version': 1,
    'disable_existing_loggers': False,
    'handlers': {
        'console':{
            'level':'DEBUG',
            'class':'logging.StreamHandler',
        },
    },
    'loggers': {
        'django.db.backends': {
            'handlers': ['console'],
            'propagate': True,
            'level':'DEBUG',
        },
    }
}

6、最后在命令行中执行两条数据库迁移命令,即可在指定的数据库db1中创建表

python manage.py makemigrations
python manage.py migrate
#1、makemigrations只是生成一个数据库迁移记录的文件,而migrate才是将更改真正提交到数据库执行
# 2、数据库迁移记录的文件存放于app01下的migrations文件夹里
# 3、了解:使用命令python manage.py showmigrations可以查看没有执行migrate的文件

注:

​ 当我们直接去数据库里查看生成的表时,会发现数据库中的表与orm规定的并不一致,这完全是正常的,事实上,orm的字段约束就是不会全部体现在数据库的表中,比如我们为字段gender设置的默认值default=1,去数据库中查看会发现该字段的default部分为null,虽然数据库没有增加默认值,但是我们在使用orm插入值时,完全为gender字段插入空,orm会按照自己的约束将空转换成默认值后,再提交给数据库执行

添加

方式一:

# 1、用模型类创建一个对象,一个对象对应数据库表中的一条记录
obj = Employee(name="Egon", gender=0, birth='1997-01-27', department="财务部", salary=100.1)
# 2、调用对象下的save方法,即可以将一条记录插入数据库
obj.save()

方式二:

# 每个模型表下都有一个objects管理器,用于对该表中的记录进行增删改查操作,其中增加操作如下所示
obj = Employee.objects.create(name="Egon", gender=0, birth='1997-01-27', department="财务部", salary=100.1)

查询

查询API

mysql> select * from app01_employee;
+----+-------+--------+------------+------------+--------+
| id | name  | gender | birth      | department | salary |
+----+-------+--------+------------+------------+--------+
|  1 | Egon  |      0 | 1997-01-27 | 财务部     |  100.1 |
|  2 | Kevin |      1 | 1998-02-27 | 技术部     |   10.1 |
|  3 | Lili  |      0 | 1990-02-27 | 运营部     |   20.1 |
|  4 | Tom   |      1 | 1991-02-27 | 运营部     |   30.1 |
|  5 | Jack  |      1 | 1992-02-27 | 技术部     |   11.2 |
|  6 | Robin |      1 | 1988-02-27 | 技术部     |  200.3 |
|  7 | Rose  |      0 | 1989-02-27 | 财务部     |   35.1 |
|  8 | Egon  |      0 | 1997-01-27 | 财务部     |  100.1 |
|  9 | Egon  |      0 | 1997-01-27 | 财务部     |  100.1 |
+----+-------+--------+------------+------------+--------+

每个模型表下都有一个objects管理器,用于对该表中的记录进行增删改查操作,其中查询操作如下

  • 注意:下述方法(除了count外)的返回值都是一个模型类Employee的对象,为了后续描述方便,我们统一将模型类的对象称为"记录对象",每一个”记录对象“都唯一对应表中的一条记录,
# 1. get(**kwargs)
# 1.1: 有参,参数为筛选条件
# 1.2: 返回值为一个符合筛选条件的记录对象(有且只有一个),如果符合筛选条件的对象超过一个或者没有都会抛出错误。
obj=Employee.objects.get(id=1)
print(obj.name,obj.birth,obj.salary) #输出:Egon 1997-01-27 100.1

# 2、first()
# 2.1:无参
# 2.2:返回查询出的第一个记录对象
obj=Employee.objects.first() # 在表所有记录中取第一个
print(obj.id,obj.name) # 输出:1 Egon

# 3、last()
# 3.1: 无参
# 3.2: 返回查询出的最后一个记录对象
obj = Employee.objects.last() # 在表所有记录中取最后一个
print(obj.id, obj.name)  # 输出:9 Egon

# 4、count():
# 4.1:无参
# 4.2:返回包含记录对象的总数量
res = Employee.objects.count() # 统计表所有记录的个数
print(res) # 输出:9

# 注意:如果我们直接打印Employee的对象将没有任何有用的提示信息,我们可以在模型类中定义__str__来进行定制
class Employee(models.Model):
    ......
	# 在原有的基础上新增代码如下
    def __str__(self):
        return "<%s:%s>" %(self.id,self.name)
# 此时我们print(obj)显示的结果就是: <本条记录中id字段的值:本条记录中name字段的值>

!!!强调!!!:下述方法查询的结果都有可能包含多个记录对象,为了存放查询出的多个记录对象,django的ORM自定义了一种数据类型Queryeset,所以下述方法的返回值均为QuerySet类型的对象,QuerySet对象中包含了查询出的多个记录对象

# 1、filter(**kwargs):
# 1.1:有参,参数为过滤条件
# 1.2:返回值为QuerySet对象,QuerySet对象中包含了符合过滤条件的多个记录对象
queryset_res=Employee.objects.filter(department='技术部')
# print(queryset_res) # 输出: <QuerySet [<Employee: <2:Kevin>>, <Employee: <5:Jack>>, <Employee: <6:Robin>>]>

# 2、exclude(**kwargs)
# 2.1: 有参,参数为过滤条件
# 2.2: 返回值为QuerySet对象,QuerySet对象中包含了不符合过滤条件的多个记录对象
queryset_res=Employee.objects.exclude(department='技术部')

# 3、all()
# 3.1:无参
# 3.2:返回值为QuerySet对象,QuerySet对象中包含了查询出的所有记录对象
queryset_res = Employee.objects.all() # 查询出表中所有的记录对象

# 4、order_by(*field):
# 4.1:有参,参数为排序字段,可以指定多个字段,在字段1相同的情况下,可以按照字段2进行排序,以此类推,默认升序排列,在字段前加横杆代表降序排(如"-id")
# 4.2:返回值为QuerySet对象,QuerySet对象中包含了排序好的记录对象
queryset_res = Employee.objects.order_by("salary","-id") # 先按照salary字段升序排,如果salary相同则按照id字段降序排

# 5、values(*field)
# 5.1:有参,参数为字段名,可以指定多个字段
# 5.2:返回值为QuerySet对象,QuerySet对象中包含的并不是一个个的记录对象,而上多个字典,字典的key即我们传入的字段名
queryset_res = Employee.objects.values('id','name')
print(queryset_res) # 输出:<QuerySet [{'id': 1, 'name': 'Egon'}, {'id': 2, 'name': 'Kevin'}, ......]>
print(queryset_res[0]['name']) # 输出:Egon

# 6、values_list(*field):
# 6.1:有参,参数为字段名,可以指定多个字段
# 6.2:返回值为QuerySet对象,QuerySet对象中包含的并不是一个个的记录对象,而上多个小元组,字典的key即我们传入的字段名
queryset_res = Employee.objects.values_list('id','name')
print(queryset_res) # 输出:<QuerySet [(1, 'Egon'), (2, 'Kevin'),), ......]>
print(queryset_res[0][1]) # 输出:Egon

上述返回值都是QuerySet类型的对象,支持链式操作,支持索引

# 1、reverse():
# 1.1:无参
# 1.2:对排序的结果取反,返回值为QuerySet对象
queryset_res = Employee.objects.order_by("salary", "-id").reverse()

# 2、exists():
# 2.1:无参
# 2.2:返回值为布尔值,如果QuerySet包含数据,就返回True,否则返回False
res = Employee.objects.filter(id=100).exists()
print(res)  # 输出:False

# 3、distinct():
# 3.1:如果使用的是Mysql数据库,那么distinct()无需传入任何参数
# 3.2:从values或values_list的返回结果中剔除重复的记录对象,返回值为QuerySet对象
res = Employee.objects.filter(name='Egon').values('name', 'salary').distinct()
print(res) # 输出:<QuerySet [{'name': 'Egon', 'salary': Decimal('100.1')}]>

res1 = Employee.objects.filter(name='Egon').values_list('name', 'salary').distinct()
print(res1) # 输出:<QuerySet [('Egon', Decimal('100.1'))]>

F与Q查询

F查询

在上面所有的例子中,我们在进行条件过滤时,都只是用某个字段与某个具体的值做比较。如果我们要对两个字段的值做比较,那该怎么做呢?

Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较两个不同字段的值,如下

# 一张书籍表中包含字段:评论数commentNum、收藏数keepNum,要求查询:评论数大于收藏数的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum'))

Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作

# 查询评论数大于收藏数2倍的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum')*2)

修改操作也可以使用F函数,比如将每一本书的价格提高30元:

Book.objects.all().update(price=F("price")+30) 

Q查询

filter() 等方法中逗号分隔开的多个关键字参数都是逻辑与(AND) 的关系。 如果我们需要使用逻辑或(OR)来连接多个条件,就用到了Django的Q对象

可以将条件传给类Q来实例化出一个对象,Q的对象可以使用&| 操作符组合起来,&等同于and,|等同于or

from django.db.models import Q
Employee.objects.filter(Q(id__gt=5) | Q(name="Egon"))

# 等同于sql:select * from app01_employee where id < 5 or name = 'Egon';