-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwebish_simulator_test.py
50 lines (38 loc) · 1.37 KB
/
webish_simulator_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright 2018 BBVA
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import webish_simulator as ws
import pandas as pd
import datetime
import numpy
weeks = 4
total_hours = weeks * 24 * 7
startdate = datetime.datetime.now()
dataframe = pd.DataFrame(
numpy.random.randint(100, total_hours),
index=pd.date_range(start=startdate, periods=total_hours, freq='H'),
columns=('hits',)
)
monthly_hits = 28 * 24
output_df = ws.simulate(dataframe, monthly_scale_factor=monthly_hits)
def test_simulator(df=output_df):
# print(dataframe.head())
assert type(df) == pd.DataFrame
def test_normalization(df=output_df):
sum_norm = df['reqs_normalized'].sum()
assert int(round(sum_norm)) == 1
def test_scale_factor(df=output_df):
assert df['requests'].sum() == monthly_hits
def test_costs(df=output_df):
output_df = ws.get_cost(df)
assert type(output_df) == pd.DataFrame