AutoLidarPerception
/
ICCVW21-LiDAR-Panoptic-Segmentation-TradiCV-Survey-of-Point-Cloud-Cluster
Public
forked from placeforyiming/ICCVW21-LiDAR-Panoptic-Segmentation-TradiCV-Survey-of-Point-Cloud-Cluster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemantic_then_instance_post_inferece.py
333 lines (257 loc) · 11.3 KB
/
semantic_then_instance_post_inferece.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed
import torchvision
import torchvision.transforms as transforms
import numpy as np
import os
import torch.nn.functional as Func
import argparse
from torchvision.transforms import functional as FF
from dataloader.Dataset_semanticKITTI import *
from dataloader.laserscan import SemLaserScan,LaserScan
from PC_cluster.depth_cluster.build.Depth_Cluster import Depth_Cluster
from PC_cluster.Euclidean_cluster.build import Euclidean_Cluster
from PC_cluster.SuperVoxel_cluster.build import SuperVoxel_Cluster
from PC_cluster.ScanLineRun_cluster.build import ScanLineRun_Cluster
import random
import time
import cv2
from collections import Counter
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',dest= "dataset", default='semanticKITTI', help='')
parser.add_argument('--root', dest= "root", default='./Dataset/semanticKITTI/',help="./Dataset/semanticKITTI/")
parser.add_argument('--range_y', dest= "range_y", default=64, help="64")
parser.add_argument('--range_x', dest= "range_x", default=2048, help="2048")
parser.add_argument('--minimum_points', dest= "minimum_points", default=40, help="minimum_points of each class")
parser.add_argument('--which_cluster', dest= "which_cluster", default=1, help="4: ScanLineRun clustering; 3: superVoxel clustering; 2: euclidean; 1: depth_cluster; ")
parser.add_argument('--mode', dest= "mode", default='val', help="val or test; ")
args = parser.parse_args()
inv_label_dict={0:0,1:10,2:11,3:15,4:18,5:20,6:30,7:31,8:32,9:40,10:44,11:48,12:49,13:50,14:51,15:70,16:71,17:72,18:80,19:81}
inv_label_dict_reverse={0:0,10:1,11:2,15:3,18:4,20:5,30:6,31:7,32:8,40:9,44:10,48:11,49:12,50:13,51:14,70:15,71:16,72:17,80:18,81:19}
def NN_filter_here(proj_range,semantic_pred,instance_pred,k_size=5):
semantic_pred=semantic_pred.double()
instance_pred=instance_pred.double()
H,W=np.shape(proj_range)
proj_range_expand=torch.unsqueeze(proj_range,axis=0)
proj_range_expand=torch.unsqueeze(proj_range_expand,axis=0)
semantic_pred_expand=torch.unsqueeze(semantic_pred,axis=0)
semantic_pred_expand=torch.unsqueeze(semantic_pred_expand,axis=0)
instance_pred_expand=torch.unsqueeze(instance_pred,axis=0)
instance_pred_expand=torch.unsqueeze(instance_pred_expand,axis=0)
pad = int((k_size - 1) / 2)
proj_unfold_range = Func.unfold(proj_range_expand,kernel_size=(k_size, k_size),padding=(pad, pad))
proj_unfold_range = proj_unfold_range.reshape(-1, k_size*k_size, H, W)
proj_unfold_pre_sem = Func.unfold(semantic_pred_expand,kernel_size=(k_size, k_size),padding=(pad, pad))
proj_unfold_pre_sem = proj_unfold_pre_sem.reshape(-1, k_size*k_size, H, W)
proj_unfold_pre_ins = Func.unfold(instance_pred_expand,kernel_size=(k_size, k_size),padding=(pad, pad))
proj_unfold_pre_ins = proj_unfold_pre_ins.reshape(-1, k_size*k_size, H, W)
return proj_unfold_range,proj_unfold_pre_sem,proj_unfold_pre_ins
if args.which_cluster==1:
cluster=Depth_Cluster(0.15,9)
if args.which_cluster==2:
cluster=Euclidean_Cluster.Euclidean_Cluster(0.5,int(args.minimum_points),10000)
if args.which_cluster==3:
cluster=SuperVoxel_Cluster.SuperVoxel_Cluster(0.5, 8, 0.0, 1.0, 0.0)
if args.which_cluster==4:
cluster=ScanLineRun_Cluster.ScanLineRun_Cluster(0.5, 1)
CFG = yaml.safe_load(open(args.root+'semantic-kitti.yaml', 'r'))
label_transfer_dict =CFG["learning_map"]
for zzz in range(11,22):
A=LaserScan(project=True, flip_sign=False, H=args.range_y, W=args.range_x, fov_up=3.0, fov_down=-25.0)
if args.mode=='test':
lidar_list=glob.glob(args.root+'/data_odometry_velodyne/*/*/'+'test/'+str(zzz)+'/*/*.bin')
if not os.path.exists("./method_predictions/"):
print ("inference semantic first")
if not os.path.exists("./method_predictions/sequences/"):
print ("inference semantic first")
save_path_for_prediction="./method_predictions/sequences/"+str(zzz)+"/"
if not os.path.exists(save_path_for_prediction):
print ("inference semantic first")
save_path_for_prediction="./method_predictions/sequences/"+str(zzz)+"/predictions/"
if not os.path.exists(save_path_for_prediction):
print ("inference semantic first")
if args.mode=='val':
lidar_list=glob.glob(args.root+'/data_odometry_velodyne/*/*/'+'val'+'/*/*/*.bin')
if not os.path.exists("./method_predictions/"):
print ("inference semantic first")
if not os.path.exists("./method_predictions/sequences/"):
print ("inference semantic first")
save_path_for_prediction="./method_predictions/sequences/08/"
if not os.path.exists(save_path_for_prediction):
print ("inference semantic first")
save_path_for_prediction="./method_predictions/sequences/08/predictions/"
if not os.path.exists(save_path_for_prediction):
print ("inference semantic first")
print (len(lidar_list))
if args.mode=='val' and zzz>11:
continue
time_list=[]
for i in range(len(lidar_list)):
if i%100==0:
print (i)
path_list=lidar_list[i].split('/')
label_file=save_path_for_prediction+path_list[-1][:len(path_list[-1])-3]+"label"
A.open_scan(lidar_list[i])
print (lidar_list[i])
semantic_label=np.fromfile(label_file,dtype=np.uint32)
semantic_label = semantic_label.reshape((-1))
semantic_label = semantic_label & 0xFFFF
semantic_label_inv=[inv_label_dict_reverse[mm] for mm in semantic_label]
label_img=np.zeros((64,2048))
depth_img=np.zeros((64,2048))
covered_points=[]
for jj in range(len(A.proj_x)):
y_range,x_range=A.proj_y[jj],A.proj_x[jj]
if label_img[y_range,x_range]==0:
label_img[y_range,x_range]=semantic_label_inv[jj]
depth_img[y_range,x_range]=A.unproj_range[jj]
if args.which_cluster==1:
mask=(label_img<9)
range_img_pre=A.proj_range*mask
range_img=range_img_pre.reshape(-1)
a=time.time()
instance_label=cluster.Depth_cluster(range_img)
b=time.time()
time_list.append(b-a)
instance_label=np.asarray(instance_label).reshape(64,2048)
if args.which_cluster==2:
mask=np.logical_and(label_img>0,label_img<9)
range_img_pre_x=A.proj_xyz[:,:,0]*mask
range_img_pre_y=A.proj_xyz[:,:,1]*mask
range_img_pre_z=A.proj_xyz[:,:,2]*mask
# process the voxelized point cloud to save comlexity of kd-tree
voxel_size=0.1
range_img_pre_x_index=np.round(range_img_pre_x/voxel_size)
range_img_pre_y_index=np.round(range_img_pre_y/voxel_size)
range_img_pre_z_index=np.round(range_img_pre_z/voxel_size)
exist_index=[]
mm_list=[]
nn_list=[]
index_mask=np.zeros((64,2048))
for m in range(64):
for n in range(2048):
each_index=str(range_img_pre_x_index[m,n])+'_'+str(range_img_pre_y_index[m,n])+'_'+str(range_img_pre_z_index[m,n])
if each_index in exist_index:
continue
else:
exist_index.append(each_index)
mm_list.append(m)
nn_list.append(n)
index_mask[m,n]=1
range_img_pre_x=A.proj_xyz[:,:,0]*index_mask
range_img_pre_y=A.proj_xyz[:,:,1]*index_mask
range_img_pre_z=A.proj_xyz[:,:,2]*index_mask
range_img_x=range_img_pre_x.reshape(-1)
range_img_y=range_img_pre_y.reshape(-1)
range_img_z=range_img_pre_z.reshape(-1)
mask_a=index_mask.reshape(-1)
total_points=np.sum(mask_a).astype(int)
#print (total_points)
a=time.time()
instance_label=cluster.Euclidean_cluster(range_img_x,range_img_y,range_img_z,mask_a,total_points)
b=time.time()
time_list.append(b-a)
instance_label=np.asarray(instance_label).reshape(64,2048)
look_up_dict={}
for mm in range(len(exist_index)):
look_up_dict[exist_index[mm]]=instance_label[mm_list[mm],nn_list[mm]]
for m in range(64):
for n in range(2048):
each_index=str(range_img_pre_x_index[m,n])+'_'+str(range_img_pre_y_index[m,n])+'_'+str(range_img_pre_z_index[m,n])
instance_label[m,n]=look_up_dict[each_index]
instance_label=instance_label*mask
# Supervoxel Clustering
if args.which_cluster==3:
mask=np.logical_and(label_img>0,label_img<9)
range_img_x=A.proj_xyz[:,:,0]*mask
range_img_y=A.proj_xyz[:,:,1]*mask
range_img_z=A.proj_xyz[:,:,2]*mask
# print ('input cloud size', range_img_x.shape)
width = 64
height = 2048
# print(range_img_x)
a=time.time()
instance_label=cluster.SuperVoxel_cluster(range_img_x,range_img_y,range_img_z,width,height)
b=time.time()
time_list.append(b-a)
assert(len(instance_label)==64 and len(instance_label[0])==2048)
instance_label=np.array(instance_label)
instance_label=instance_label*mask
# print(instance_label)
# ScanLineRun Clustering
if args.which_cluster==4:
mask=np.logical_and(label_img>0,label_img<9)
range_img_x=A.proj_xyz[:,:,0]*mask
range_img_y=A.proj_xyz[:,:,1]*mask
range_img_z=A.proj_xyz[:,:,2]*mask
width = 64
height = 2048
a=time.time()
instance_label=cluster.ScanLineRun_cluster(range_img_x,range_img_y,range_img_z,mask,width,height)
b=time.time()
time_list.append(b-a)
instance_label=np.array(instance_label)
print (np.sum(time_list)/len(time_list))
true_lable=0
for mm in np.unique(instance_label):
if np.sum(mm==instance_label)>args.minimum_points:
true_lable+=1
else:
instance_label[mm==instance_label]=0
color_rgb=np.zeros((64,2048,3))
all_instance_lables= np.unique(instance_label)
for i in all_instance_lables:
if i>0:
temp_labels = Counter(label_img[instance_label==i])
temp_dict={5:0}
if np.min(temp_labels.keys())>temp_dict.keys():
changed_label=temp_labels.most_common(1)[0][0]
label_img[np.where(instance_label==i)]=changed_label
rgb_x=random.randint(0,254)
rgb_y=random.randint(0,254)
rgb_z=random.randint(0,254)
temp_mask=instance_label==i
color_rgb[:,:,0]+=temp_mask*rgb_x
color_rgb[:,:,1]+=temp_mask*rgb_y
color_rgb[:,:,2]+=temp_mask*rgb_z
plt.imsave('./output_example.png',np.asarray(color_rgb).astype(np.uint8))
#time.sleep(1)
t_1=torch.squeeze(torch.from_numpy(depth_img))
t_2=torch.squeeze(torch.from_numpy(label_img))
t_3=torch.squeeze(torch.from_numpy(instance_label))
proj_unfold_range,proj_unfold_sem,proj_unfold_ins=NN_filter_here(t_1,t_2,t_3)
proj_unfold_range=proj_unfold_range.cpu().numpy()
proj_unfold_sem=proj_unfold_sem.cpu().numpy()
proj_unfold_ins=proj_unfold_ins.cpu().numpy()
label=[]
for jj in range(len(A.proj_x)):
y_range,x_range=A.proj_y[jj],A.proj_x[jj]
if A.unproj_range[jj]==depth_img[y_range,x_range]:
semantic_label_each=label_img[y_range,x_range]
instance_label_each=instance_label[y_range,x_range]
lower_half=inv_label_dict[semantic_label_each]
upper_half=instance_label_each.astype(np.long)
label_each = (upper_half << 16) + lower_half
label.append(label_each)
else:
if semantic_label_inv[jj]<9:
potential_label_sem=proj_unfold_sem[0,:,y_range,x_range]
potential_label_ins=proj_unfold_ins[0,:,y_range,x_range]
potential_range=proj_unfold_range[0,:,y_range,x_range]
min_arg=np.argmin(abs(potential_range-A.unproj_range[jj]))
lower_half=inv_label_dict[potential_label_sem[min_arg]]
upper_half=potential_label_ins[min_arg].astype(np.long)
label_each = (upper_half << 16) + lower_half
label.append(label_each)
else:
semantic_label_each=semantic_label_inv[jj]
instance_label_each=0
lower_half=inv_label_dict[semantic_label_each]
upper_half=instance_label_each
label_each = (upper_half << 16) + lower_half
label.append(label_each)
label=np.asarray(label)
label = label.astype(np.uint32)
label.tofile(label_file)