-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdcase_evaluator.py
156 lines (117 loc) · 4.55 KB
/
dcase_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import sys
import re
import json
from typing import Dict, List
import csv
import pandas as pd
import numpy as np
import torch
from tqdm import tqdm
import pathlib
import librosa
import lightning.pytorch as pl
from models.clap_encoder import CLAP_Encoder
sys.path.append('../dcase2024_task9_baseline/')
from utils import (
load_ss_model,
calculate_sdr,
calculate_sisdr,
parse_yaml,
get_mean_sdr_from_dict,
)
class DCASEEvaluator:
def __init__(
self,
sampling_rate=16000,
eval_indexes='lass_synthetic_validation.csv',
audio_dir='lass_validation',
) -> None:
r"""DCASE T9 LASS evaluator.
Returns:
None
"""
self.sampling_rate = sampling_rate
with open(eval_indexes) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
eval_list = [row for row in csv_reader][1:]
self.eval_list = eval_list
self.audio_dir = audio_dir
def __call__(
self,
pl_model: pl.LightningModule
) -> Dict:
r"""Evalute."""
print(f'Evaluation on DCASE T9 synthetic validation set.')
pl_model.eval()
device = pl_model.device
sisdrs_list = []
sdris_list = []
sdrs_list = []
with torch.no_grad():
for eval_data in tqdm(self.eval_list):
source, noise, snr, caption = eval_data
snr = int(snr)
source_path = os.path.join(self.audio_dir, f'{source}.wav')
noise_path = os.path.join(self.audio_dir, f'{noise}.wav')
source, fs = librosa.load(source_path, sr=self.sampling_rate, mono=True)
noise, fs = librosa.load(noise_path, sr=self.sampling_rate, mono=True)
# create audio mixture with a specific SNR level
source_power = np.mean(source ** 2)
noise_power = np.mean(noise ** 2)
desired_noise_power = source_power / (10 ** (snr / 10))
scaling_factor = np.sqrt(desired_noise_power / noise_power)
noise = noise * scaling_factor
mixture = source + noise
# declipping if need be
max_value = np.max(np.abs(mixture))
if max_value > 1:
source *= 0.9 / max_value
mixture *= 0.9 / max_value
sdr_no_sep = calculate_sdr(ref=source, est=mixture)
conditions = pl_model.query_encoder.get_query_embed(
modality='text',
text=[caption],
device=device
)
input_dict = {
"mixture": torch.Tensor(mixture)[None, None, :].to(device),
"condition": conditions,
}
sep_segment = pl_model.ss_model(input_dict)["waveform"]
# sep_segment: (batch_size=1, channels_num=1, segment_samples)
sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy()
# sep_segment: (segment_samples,)
sdr = calculate_sdr(ref=source, est=sep_segment)
sdri = sdr - sdr_no_sep
sisdr = calculate_sisdr(ref=source, est=sep_segment)
sisdrs_list.append(sisdr)
sdris_list.append(sdri)
sdrs_list.append(sdr)
mean_sdri = np.mean(sdris_list)
mean_sisdr = np.mean(sisdrs_list)
mean_sdr = np.mean(sdrs_list)
return mean_sisdr, mean_sdri, mean_sdr
def eval(evaluator, checkpoint_path, config_yaml='config/audiosep_base.yaml', device = "cuda"):
configs = parse_yaml(config_yaml)
# Load model
query_encoder = CLAP_Encoder().eval()
pl_model = load_ss_model(
configs=configs,
checkpoint_path=checkpoint_path,
query_encoder=query_encoder
).to(device)
print(f'------- Start Evaluation -------')
# evaluation
SISDR, SDRi, SDR = evaluator(pl_model)
msg_clotho = "SDR: {:.3f}, SDRi: {:.3f}, SISDR: {:.3f}".format(SDR, SDRi, SISDR)
print(msg_clotho)
print('------------------------- Done ---------------------------')
if __name__ == '__main__':
dcase_evaluator = DCASEEvaluator(
sampling_rate=16000,
eval_indexes='lass_synthetic_validation.csv',
audio_dir='lass_validation',
)
checkpoint_path='audiosep_16k,baseline,step=200000.ckpt'
eval(dcase_evaluator, checkpoint_path, device = "cuda")