-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathval_latent_diffusion.py
executable file
·209 lines (160 loc) · 6.32 KB
/
val_latent_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Author: Haohe Liu
# Email: [email protected]
# Date: 11 Feb 2023
import sys
sys.path.append("src")
import shutil
import os
# please modify the following settings to use wandb or setup the cache folder
# os.environ["HF_HOME"] = ""
# os.environ["WANDB_API_KEY"] = ""
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# os.environ["HUGGINGFACE_HUB_CACHE"] = ""
# os.environ["TORCH_HOME"] = ""
# import os
from tqdm import tqdm
import argparse
import yaml
import torch
import ipdb
from pytorch_lightning.strategies.ddp import DDPStrategy
from utilities.data.dataset import AudioDataset
from torch.utils.data import WeightedRandomSampler
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from utilities.tools import get_restore_step
import wandb
from latent_diffusion.util import instantiate_from_config
# wandb.login(key = "f91003cb3a038eeab803a8224311a8ca7d47d2dd")
def print_on_rank0(msg):
if torch.distributed.get_rank() == 0:
print(msg)
def main(configs, config_yaml_path, exp_group_name, exp_name):
seed_everything(0)
if("precision" in configs.keys()):
torch.set_float32_matmul_precision(configs["precision"])
log_path = configs["log_directory"]
batch_size = configs["model"]["params"]["batchsize"]
evaluator = None
if("dataloader_add_ons" in configs["data"].keys()):
dataloader_add_ons = configs["data"]["dataloader_add_ons"]
else:
dataloader_add_ons = []
val_dataset = AudioDataset(configs, split="test", add_ons=dataloader_add_ons)
val_loader = DataLoader(
val_dataset,
batch_size=1,
num_workers=4
)
print(
"The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(val_dataset), len(val_loader), batch_size)
)
test_data_subset_folder = os.path.join(
os.path.dirname(configs["log_directory"]), "testset_data", val_dataset.dataset_name
)
try:
config_reload_from_ckpt = configs["reload_from_ckpt"]
except:
config_reload_from_ckpt = None
try:
limit_val_batches = configs["step"]["limit_val_batches"]
except:
limit_val_batches = None
validation_every_n_epochs = configs["step"]["validation_every_n_epochs"]
save_checkpoint_every_n_steps = configs["step"]["save_checkpoint_every_n_steps"]
max_steps = configs["step"]["max_steps"]
save_top_k = configs["step"]["save_top_k"]
checkpoint_path = os.path.join(
log_path,
exp_group_name,
exp_name,
"checkpoints"
)
wandb_path = os.path.join(
log_path,
exp_group_name,
exp_name
)
checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
monitor="global_step",
mode="max",
filename="checkpoint-fad-{val/frechet_inception_distance:.2f}-global_step={global_step:.0f}",
every_n_train_steps=save_checkpoint_every_n_steps,
save_top_k=save_top_k,
auto_insert_metric_name=False,
save_last=True,
)
os.makedirs(checkpoint_path, exist_ok=True)
shutil.copy(config_yaml_path, wandb_path)
# os.system("cp %s %s" % (config_yaml_path, wandb_path))
if len(os.listdir(checkpoint_path)) > 0:
print("Load checkpoint from path: %s" % checkpoint_path)
restore_step, n_step = get_restore_step(checkpoint_path)
resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
print("Resume from checkpoint", resume_from_checkpoint)
elif config_reload_from_ckpt is not None:
resume_from_checkpoint = config_reload_from_ckpt
print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
else:
print("Train from scratch")
resume_from_checkpoint = None
devices = torch.cuda.device_count()
latent_diffusion = instantiate_from_config(configs["model"])
latent_diffusion.set_log_dir(log_path, exp_group_name, exp_name)
wandb_logger = WandbLogger(
save_dir=wandb_path,
project=configs["project"],
config=configs,
name="%s/%s" % (exp_group_name, exp_name),
)
latent_diffusion.test_data_subset_path = test_data_subset_folder
try:
pretrained_ckpt = configs["pretrained_ckpt"]
print("load from pretrained",pretrained_ckpt)
checkpoint = torch.load(pretrained_ckpt)
latent_diffusion.load_state_dict(checkpoint["state_dict"])
except:
pass
print("==> Save checkpoint every %s steps" % save_checkpoint_every_n_steps)
print("==> Perform validation every %s epochs" % validation_every_n_epochs)
trainer = Trainer(
accelerator="gpu",
devices=devices,
# precision="16-mixed",
# profiler=profiler,
# logger=wandb_logger,
max_steps = max_steps,
num_sanity_val_steps=0,
limit_val_batches=limit_val_batches,
check_val_every_n_epoch=validation_every_n_epochs,
strategy=DDPStrategy(find_unused_parameters=True),
callbacks=[checkpoint_callback],
)
print("the checkpoint is",resume_from_checkpoint)
trainer.validate(latent_diffusion, val_loader, ckpt_path=resume_from_checkpoint)
def set_yaml_config(config_yaml, cfg_scale, ddim, n_cand):
config_yaml["model"]["params"]["evaluation_params"]["unconditional_guidance_scale"] = cfg_scale
config_yaml["model"]["params"]["evaluation_params"]["ddim_sampling_steps"] = ddim
config_yaml["model"]["params"]["evaluation_params"]["n_candidates_per_samples"] = n_cand
return config_yaml
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config_yaml",
type=str,
default = "lass_config/2channel_flow.yaml",
help="path to config .yaml file",
)
args = parser.parse_args()
assert torch.cuda.is_available(), "CUDA is not available"
config_yaml = args.config_yaml
exp_name = os.path.basename(config_yaml.split(".")[0])
exp_group_name = os.path.basename(os.path.dirname(config_yaml))
config_yaml_path = os.path.join(config_yaml)
config_yaml = yaml.load(open(config_yaml_path, "r"), Loader=yaml.FullLoader)
main(config_yaml, config_yaml_path, exp_group_name, exp_name)