-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_latent_diffusion.py
executable file
·263 lines (202 loc) · 7.91 KB
/
train_latent_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Code modefied from AudioLDM Haohe Liu details can be found from https://github.com/haoheliu/AudioLDM-training-finetunin
import sys
sys.path.append("src")
import shutil
import os
# please modify the following settings to use wandb or setup the cache folder
# os.environ["HF_HOME"] = ""
# os.environ["WANDB_API_KEY"] = ""
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# os.environ["HUGGINGFACE_HUB_CACHE"] = ""
# os.environ["TORCH_HOME"] = ""
import argparse
import yaml
import torch
import ipdb
from pytorch_lightning.strategies.ddp import DDPStrategy
# from latent_diffusion.models.ddpm import LatentDiffusion
from utilities.data.dataset import AudioDataset
from audioldm_eval import EvaluationHelper
from torch.utils.data import WeightedRandomSampler
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
import pytorch_lightning as pl
from utilities.tools import get_restore_step
# import wandb
from latent_diffusion.util import instantiate_from_config
import logging
import pdb
from tqdm import tqdm
# logging.basicConfig(level=logging.WARNING)
logging.getLogger('fsspec').setLevel(logging.ERROR)
# import logging
logging.getLogger('numba').setLevel(logging.WARNING)
# wandb.login()
def print_on_rank0(msg):
if torch.distributed.get_rank() == 0:
print(msg)
def main(configs, config_yaml_path, exp_group_name, exp_name):
if("seed" in configs.keys()):
seed_everything(configs["seed"])
else:
seed_everything(0)
if("precision" in configs.keys()):
torch.set_float32_matmul_precision(configs["precision"])
log_path = configs["log_directory"]
exp_group_name = configs["exp_group"]
exp_name = configs["exp_name"]
batch_size = configs["model"]["params"]["batchsize"]
# device = torch.device(f"cuda:{0}")
# evaluator = EvaluationHelper(16000, device)
evaluator = None
if("dataloader_add_ons" in configs["data"].keys()):
dataloader_add_ons = configs["data"]["dataloader_add_ons"]
else:
dataloader_add_ons = []
dataset = AudioDataset(configs, split="train", add_ons=dataloader_add_ons)
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=batch_size,
# num_workers=0,
pin_memory=True,
shuffle=True,
)
# one=next(it)
# pdb.set_trace()
print(
"The length of the dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(dataset), len(loader), batch_size)
)
# it = iter(loader)
# for i in tqdm(range(len(loader))):
# one=next(it)
val_dataset = AudioDataset(configs, split="test", add_ons=dataloader_add_ons)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
)
print(
"The length of the test_dataset is %s, the length of the dataloader is %s, the batchsize is %s"
% (len(val_dataset), len(val_loader), batch_size)
)
# Copy test data
test_data_subset_folder = os.path.join(
os.path.dirname(configs["log_directory"]), "testset_data", val_dataset.dataset_name
)
os.makedirs(test_data_subset_folder, exist_ok=True)
val_len = len(os.listdir(test_data_subset_folder))
# if val_len<100:
# print("the length of val is",val_len)
# copy_test_subset_data(
# val_dataset.data, test_data_subset_folder
# )
device_count = torch.cuda.device_count()
try:
config_reload_from_ckpt = configs["reload_from_ckpt"]
except:
config_reload_from_ckpt = None
try:
limit_val_batches = configs["step"]["limit_val_batches"]
except:
limit_val_batches = None
# validation_every_n_epochs = configs["step"]["validation_every_n_epochs"]
# validation_every_n_epochs = 2/436370
# try:
# validation_every_n_steps= configs["step"]["validation_every_n_steps"]
# validation_every_n_epochs = int(validation_every_n_steps/len(loader)/device_count)
# except:
validation_every_n_steps = (configs["step"]["validation_every_n_epochs"]) * len(loader)
validation_every_n_epochs = configs["step"]["validation_every_n_epochs"]
validation_every_n_steps = validation_every_n_epochs * len(loader)/device_count
# if validation_every_n_epochs >= 1:
# validation_every_n_steps = None
# ipdb.set_trace()
save_checkpoint_every_n_steps = configs["step"]["save_checkpoint_every_n_steps"]
max_steps = configs["step"]["max_steps"]
save_top_k = configs["step"]["save_top_k"]
checkpoint_path = os.path.join(
log_path,
exp_group_name,
exp_name,
"checkpoints"
)
wandb_path = os.path.join(
log_path,
exp_group_name,
exp_name
)
checkpoint_callback = ModelCheckpoint(
dirpath=checkpoint_path,
monitor="global_step",
mode="max",
filename="checkpoint-fad-{val/frechet_inception_distance:.2f}-global_step={global_step:.0f}",
every_n_train_steps=save_checkpoint_every_n_steps,
save_top_k=save_top_k,
auto_insert_metric_name=False,
save_last=True,
)
os.makedirs(checkpoint_path, exist_ok=True)
# shutil.copy(config_yaml_path, wandb_path)
# # os.system("cp %s %s" % (config_yaml_path, wandb_path))
if len(os.listdir(checkpoint_path)) > 0:
print("Load checkpoint from path: %s" % checkpoint_path)
restore_step, n_step = get_restore_step(checkpoint_path)
resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
print("Resume from checkpoint", resume_from_checkpoint)
elif config_reload_from_ckpt is not None:
resume_from_checkpoint = config_reload_from_ckpt
print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
else:
print("Train from scratch")
resume_from_checkpoint = None
devices = torch.cuda.device_count()
latent_diffusion = instantiate_from_config(configs["model"])
latent_diffusion.set_log_dir(log_path, exp_group_name, exp_name)
wandb_logger = WandbLogger(
project=exp_group_name,
name= exp_name,
save_dir=wandb_path,
# project=configs["project"],
config=configs,
)
latent_diffusion.test_data_subset_path = test_data_subset_folder
print("==> Save checkpoint every %s steps" % save_checkpoint_every_n_steps)
print("==> Perform validation every %s epoch" % validation_every_n_epochs)
trainer = Trainer(
accelerator="gpu",
devices=devices,
# precision="16-mixed",
# profiler=profiler,
logger=wandb_logger,
max_steps = max_steps,
num_sanity_val_steps=0,
limit_val_batches=limit_val_batches,
check_val_every_n_epoch = validation_every_n_epochs,
# val_check_interval = validation_every_n_steps,
# check_val_every_n_step=validation_every_n_steps,
strategy=DDPStrategy(find_unused_parameters=True),
callbacks=[checkpoint_callback],
)
trainer.fit(latent_diffusion, loader, val_loader, ckpt_path=resume_from_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config_yaml",
type=str,
default = "lass_config/2channel_flow.yaml",
required=False,
help="path to config .yaml file",
)
args = parser.parse_args()
# torch._dynamo.config.suppress_errors = True
assert torch.cuda.is_available(), "CUDA is not available"
config_yaml = args.config_yaml
exp_name = os.path.basename(config_yaml.split(".")[0])
exp_group_name = os.path.basename(os.path.dirname(config_yaml))
config_yaml_path = os.path.join(config_yaml)
config_yaml = yaml.load(open(config_yaml_path, "r"), Loader=yaml.FullLoader)
main(config_yaml, config_yaml_path, exp_group_name, exp_name)