-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0001-Feat-Enable-int4-quantized-models-to-work-with-pytor.patch
89 lines (83 loc) · 4.32 KB
/
0001-Feat-Enable-int4-quantized-models-to-work-with-pytor.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
From 8b72787f5d694624c45c20e2895fe15a69f4a908 Mon Sep 17 00:00:00 2001
From: Nikhil Gupta <[email protected]>
Date: Wed, 14 Aug 2024 23:11:11 +0000
Subject: [PATCH 1/1] [Feat]: Enable int4 quantized models to work with pytorch
kleidiai
Command: python3 torchchat.py export llama2 --output-dso-path exportedModels/llama2.so --quantize config/data/aarch64_cpu_channelwise.json --device cpu
Description:
1. model quantization comes from torch ao
2. the quantized model can be dumped using dso export and then
inferenced
Signed-off-by: Nikhil Gupta <[email protected]>
---
config/data/aarch64_cpu_channelwise.json | 8 ++++++++
generate.py | 20 ++++++++++++++++----
quantization/quantize.py | 2 +-
3 files changed, 25 insertions(+), 5 deletions(-)
create mode 100644 config/data/aarch64_cpu_channelwise.json
diff --git a/config/data/aarch64_cpu_channelwise.json b/config/data/aarch64_cpu_channelwise.json
new file mode 100644
index 0000000..55383ca
--- /dev/null
+++ b/config/data/aarch64_cpu_channelwise.json
@@ -0,0 +1,8 @@
+{
+ "executor": {"accelerator": "cpu"},
+ "precision": {"dtype": "fp32"},
+ "linear:int4": {
+ "groupsize": 0,
+ "scheme": "symmetric_channelwise"
+ }
+}
diff --git a/generate.py b/generate.py
index 5920bd6..0d954ea 100644
--- a/generate.py
+++ b/generate.py
@@ -558,7 +558,6 @@ class Generator:
):
generated_tokens.append(generated_token)
yield generated_token, None
-
seq[T + 1 : T + 1 + len(generated_tokens)] = torch.cat(generated_tokens)
seq = seq[
: T + 1 + len(generated_tokens)
@@ -802,9 +801,22 @@ class Generator:
# Don't continue here.... because we need to report and reset
# continue
- logging.info(
- f"\nTime for inference {i + 1}: {t:.02f} sec total, time to first token {aggregate_metrics.get('time_to_first_token', -1.0):.02f} sec with {'sequential' if generator_args.sequential_prefill else 'parallel'} prefill, {num_tokens_generated} tokens, {tokens_sec:.02f} tokens/sec, {1000 / tokens_sec:.02f} ms/token"
- )
+
+ generation_time = t - aggregate_metrics.get('time_to_first_token', -1.0)
+ prefill_time = aggregate_metrics.get('time_to_first_token', -1.0)
+ prefill_tokens = encoded.size(0)
+ decode_speed = (num_tokens_generated + 1)/ generation_time # added 1 for eos token
+ prefill_speed = encoded.size(0) / prefill_time
+ logging.info("\n=====================================================================")
+ logging.info(f"Input tokens : {prefill_tokens}")
+ logging.info(f"Generated tokens : {num_tokens_generated+1}")
+ logging.info(f"Time to first token : {round(prefill_time,2)} s")
+ logging.info(f"Prefill Speed : {round(prefill_speed,2)} t/s")
+ logging.info(f"Generation Speed : {round(decode_speed,2)} t/s")
+ logging.info("=====================================================================\n")
+ # logging.info(
+ # f"\nTime for inference {i + 1}: {t:.02f} sec total, time to first token {aggregate_metrics.get('time_to_first_token', -1.0):.02f} sec with {'sequential' if generator_args.sequential_prefill else 'parallel'} prefill, {num_tokens_generated} tokens, {tokens_sec:.02f} tokens/sec, {1000 / tokens_sec:.02f} ms/token"
+ # )
logging.info(
f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
)
diff --git a/quantization/quantize.py b/quantization/quantize.py
index c72ef2a..7e95f6d 100644
--- a/quantization/quantize.py
+++ b/quantization/quantize.py
@@ -86,7 +86,7 @@ def quantize_model(model: nn.Module, device, quantize_options, tokenizer=None):
try:
# Easier to ask forgiveness than permission
quant_handler = ao_quantizer_class_dict[quantizer](
- groupsize=q_kwargs["groupsize"], device=device, precision=precision
+ groupsize=q_kwargs["groupsize"], device=device, precision=precision, scheme = q_kwargs.get("scheme", None)
)
except TypeError as e:
if "unexpected keyword argument 'device'" in str(e):
--
2.34.1