-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathaction_space_manager.py
191 lines (156 loc) · 5.11 KB
/
action_space_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
from gymnasium import spaces
class ActionSpaceManager:
"""
Class representing an action space manager.
Args:
holonomic (bool): Flag indicating whether the robot is holonomic.
action_space_discrete (bool): Flag indicating whether the action space is discrete.
actions (dict): Dictionary containing the available actions.
stacked (bool): Flag indicating whether the actions are stacked.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
_holonomic (bool): Flag indicating whether the robot is holonomic.
_discrete (bool): Flag indicating whether the action space is discrete.
_actions (dict): Dictionary containing the available actions.
_stacked (bool): Flag indicating whether the actions are stacked.
_space: The action space.
Properties:
actions: Get the available actions.
action_space: Get the action space.
shape: Get the shape of the action space.
"""
def __init__(
self,
is_holonomic: bool,
is_discrete: bool,
actions: list,
# stacked: bool,
*args,
**kwargs,
) -> None:
self._holonomic = is_holonomic
self._discrete = is_discrete
self._actions = actions
# self._stacked = stacked
self._space = self.get_action_space()
@property
def actions(self):
"""
Get the available actions.
Returns:
dict: Dictionary containing the available actions.
"""
return self._actions
@property
def action_space(self):
"""
Get the action space.
Returns:
object: The action space.
"""
return self._space
@property
def shape(self):
"""
Get the shape of the action space.
Returns:
tuple: The shape of the action space.
"""
return self._space.shape
def get_action_space(self):
"""
Get the action space based on the configuration.
Returns:
object: The action space object.
"""
if self._discrete:
return spaces.Discrete(len(self._actions))
linear_range = self._actions["linear_range"]
angular_range = self._actions["angular_range"]
if not self._holonomic:
return spaces.Box(
low=np.array([linear_range[0], angular_range[0]]),
high=np.array([linear_range[1], angular_range[1]]),
dtype=np.float32,
)
linear_range_x, linear_range_y = (
linear_range["x"],
linear_range["y"],
)
return spaces.Box(
low=np.array(
[
linear_range_x[0],
linear_range_y[0],
angular_range[0],
]
),
high=np.array(
[
linear_range_x[1],
linear_range_y[1],
angular_range[1],
]
),
dtype=np.float32,
)
def decode_action(self, action) -> np.ndarray:
"""
Decode the action.
Args:
action: The action to decode.
Returns:
np.ndarray: The decoded action.
"""
if type(action) == int:
action = [action]
# if self._stacked:
# action = action[0] if action.ndim == 2 else action
if self._discrete:
return self._extend_action_array(self._translate_disc_action(action))
return self._extend_action_array(action)
def _extend_action_array(self, action: np.ndarray) -> np.ndarray:
"""
Extend the action array.
Args:
action (np.ndarray): The action array.
Returns:
np.ndarray: The extended action array.
"""
if self._holonomic:
assert (
self._holonomic and len(action) == 3
), "Robot is holonomic but action with only two freedoms of movement provided"
return action
else:
assert (
not self._holonomic and len(action) == 2
), "Robot is non-holonomic but action with more than two freedoms of movement provided"
return np.array([action[0], 0, action[1]])
def _translate_disc_action(self, action: int):
"""
Translate the discrete action.
Args:
action (int): The discrete action.
Returns:
np.ndarray: The translated action.
"""
return np.array(
[self._actions[action]["linear"], self._actions[action]["angular"]]
)
@property
def config(self) -> dict:
"""
Get the configuration.
Returns:
dict: The configuration.
"""
return {
"holonomic": self._holonomic,
"action_space_discrete": self._discrete,
"actions": self._actions,
# "stacked": self._stacked,
"space": self.action_space,
}