-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattack.py
62 lines (48 loc) · 2.4 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python3
from collections import deque
from sympy.solvers import solve
from sympy import Symbol
class WeinerAttack:
expansions = []
def __init__(self, e, N):
self.e = e
self.N = N
def continued_fraction(self):
num = self.e
den = self.N
while num != 1:
expansion = num // den
remainder = num % den
num = den
den = remainder
self.expansions.append(expansion)
def convergents(self):
k = deque([0, 1], 2)
h = deque([1, 0], 2)
for i, expansion in enumerate(self.expansions[1:]):
k_new = expansion * k[1] + k[0]
h_new = expansion * h[1] + h[0]
k.append(k_new)
h.append(h_new)
yield k_new, h_new
def phi(self):
for k, h in self.convergents():
yield (self.e * k - 1) // h
def solve_poly(self):
x = Symbol('x')
for phi in self.phi():
p = [self.N - phi + 1, self.N]
roots = solve(x**2 - p[0]*x + p[1], x)
if roots[0] * roots[1] == self.N:
return roots
def attack(self):
self.continued_fraction()
return self.solve_poly()
def main():
e = 0x0285f8d4fe29ce11605edf221868937c1b70ae376e34d67f9bb78c29a2d79ca46a60ea02a70fdb40e805b5d854255968b2b1f043963dcd61714ce4fc5c70ecc4d756ad1685d661db39d15a801d1c382ed97a048f0f85d909c811691d3ffe262eb70ccd1fa7dba1aa79139f21c14b3dfe95340491cff3a5a6ae9604329578db9f5bcc192e16aa62f687a8038e60c01518f8ccaa0befe569dadae8e49310a7a3c3bddcf637fc82e5340bef4105b533b6a531895650b2efa337d94c7a76447767b5129a04bcf3cd95bb60f6bfd1a12658530124ad8c6fd71652b8e0eb482fcc475043b410dfc4fe5fbc6bda08ca61244284a4ab5b311bc669df0c753526a79c1a57
n = 0x02aeb637f6152afd4fb3a2dd165aec9d5b45e70d2b82e78a353f7a1751859d196f56cb6d11700195f1069a73d9e5710950b814229ab4c5549383c2c87e0cd97f904748a1302400dc76b42591da17dabaf946aaaf1640f1327af16be45b8830603947a9c3309ca4d6cc9f1a2bcfdacf285fbc2f730e515ae1d93591ccd98f5c4674ec4a5859264700f700a4f4dcf7c3c35bbc579f6ebf80da33c6c11f68655092bbe670d5225b8e571d596fe426db59a6a05aaf77b3917448b2cfbcb3bd647b46772b13133fc68ffabcb3752372b949a3704b8596df4a44f085393ee2bf80f8f393719ed94ab348852f6a5e0c493efa32da5bf601063a033beaf73ba47d8205db
attack = WeinerAttack(e, n)
factor = attack.attack()
print('p:', factor[0], '\nq:', factor[1])
if __name__ == '__main__':
main()