-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrainer.py
290 lines (245 loc) · 11.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from models import *
from tensorboardX import SummaryWriter
import os
import sys
import torch
import shutil
import logging
class Trainer:
def __init__(self, data_loaders, dataset, parameter):
self.parameter = parameter
# data loader
self.train_data_loader = data_loaders[0]
self.dev_data_loader = data_loaders[1]
self.test_data_loader = data_loaders[2]
# parameters
self.few = parameter['few']
self.num_query = parameter['num_query']
self.batch_size = parameter['batch_size']
self.learning_rate = parameter['learning_rate']
self.early_stopping_patience = parameter['early_stopping_patience']
# epoch
self.epoch = parameter['epoch']
self.print_epoch = parameter['print_epoch']
self.eval_epoch = parameter['eval_epoch']
self.checkpoint_epoch = parameter['checkpoint_epoch']
# device
self.device = parameter['device']
self.metaR = MetaR(dataset, parameter)
self.metaR.to(self.device)
# optimizer
self.optimizer = torch.optim.Adam(self.metaR.parameters(), self.learning_rate)
# tensorboard log writer
if parameter['step'] == 'train':
self.writer = SummaryWriter(os.path.join(parameter['log_dir'], parameter['prefix']))
# dir
self.state_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'])
if not os.path.isdir(self.state_dir):
os.makedirs(self.state_dir)
self.ckpt_dir = os.path.join(self.parameter['state_dir'], self.parameter['prefix'], 'checkpoint')
if not os.path.isdir(self.ckpt_dir):
os.makedirs(self.ckpt_dir)
self.state_dict_file = ''
# logging
logging_dir = os.path.join(self.parameter['log_dir'], self.parameter['prefix'], 'res.log')
logging.basicConfig(filename=logging_dir, level=logging.INFO, format="%(asctime)s - %(message)s")
# load state_dict and params
if parameter['step'] in ['test', 'dev']:
self.reload()
def reload(self):
if self.parameter['eval_ckpt'] is not None:
state_dict_file = os.path.join(self.ckpt_dir, 'state_dict_' + self.parameter['eval_ckpt'] + '.ckpt')
else:
state_dict_file = os.path.join(self.state_dir, 'state_dict')
self.state_dict_file = state_dict_file
logging.info('Reload state_dict from {}'.format(state_dict_file))
print('reload state_dict from {}'.format(state_dict_file))
state = torch.load(state_dict_file, map_location=self.device)
if os.path.isfile(state_dict_file):
self.metaR.load_state_dict(state)
else:
raise RuntimeError('No state dict in {}!'.format(state_dict_file))
def save_checkpoint(self, epoch):
torch.save(self.metaR.state_dict(), os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt'))
def del_checkpoint(self, epoch):
path = os.path.join(self.ckpt_dir, 'state_dict_' + str(epoch) + '.ckpt')
if os.path.exists(path):
os.remove(path)
else:
raise RuntimeError('No such checkpoint to delete: {}'.format(path))
def save_best_state_dict(self, best_epoch):
shutil.copy(os.path.join(self.ckpt_dir, 'state_dict_' + str(best_epoch) + '.ckpt'),
os.path.join(self.state_dir, 'state_dict'))
def write_training_log(self, data, epoch):
self.writer.add_scalar('Training_Loss', data['Loss'], epoch)
def write_validating_log(self, data, epoch):
self.writer.add_scalar('Validating_MRR', data['MRR'], epoch)
self.writer.add_scalar('Validating_Hits_10', data['Hits@10'], epoch)
self.writer.add_scalar('Validating_Hits_5', data['Hits@5'], epoch)
self.writer.add_scalar('Validating_Hits_1', data['Hits@1'], epoch)
def logging_training_data(self, data, epoch):
logging.info("Epoch: {}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
epoch, data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
def logging_eval_data(self, data, state_path, istest=False):
setname = 'dev set'
if istest:
setname = 'test set'
logging.info("Eval {} on {}".format(state_path, setname))
logging.info("MRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
def rank_predict(self, data, x, ranks):
# query_idx is the idx of positive score
query_idx = x.shape[0] - 1
# sort all scores with descending, because more plausible triple has higher score
_, idx = torch.sort(x, descending=True)
rank = list(idx.cpu().numpy()).index(query_idx) + 1
ranks.append(rank)
# update data
if rank <= 10:
data['Hits@10'] += 1
if rank <= 5:
data['Hits@5'] += 1
if rank == 1:
data['Hits@1'] += 1
data['MRR'] += 1.0 / rank
def do_one_step(self, task, iseval=False, curr_rel=''):
loss, p_score, n_score = 0, 0, 0
if not iseval:
self.optimizer.zero_grad()
p_score, n_score = self.metaR(task, iseval, curr_rel)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y)
loss.backward()
self.optimizer.step()
elif curr_rel != '':
p_score, n_score = self.metaR(task, iseval, curr_rel)
y = torch.Tensor([1]).to(self.device)
loss = self.metaR.loss_func(p_score, n_score, y)
return loss, p_score, n_score
def train(self):
# initialization
best_epoch = 0
best_value = 0
bad_counts = 0
# training by epoch
for e in range(self.epoch):
# sample one batch from data_loader
train_task, curr_rel = self.train_data_loader.next_batch()
loss, _, _ = self.do_one_step(train_task, iseval=False, curr_rel=curr_rel)
# print the loss on specific epoch
if e % self.print_epoch == 0:
loss_num = loss.item()
self.write_training_log({'Loss': loss_num}, e)
print("Epoch: {}\tLoss: {:.4f}".format(e, loss_num))
# save checkpoint on specific epoch
if e % self.checkpoint_epoch == 0 and e != 0:
print('Epoch {} has finished, saving...'.format(e))
self.save_checkpoint(e)
# do evaluation on specific epoch
if e % self.eval_epoch == 0 and e != 0:
print('Epoch {} has finished, validating...'.format(e))
valid_data = self.eval(istest=False, epoch=e)
self.write_validating_log(valid_data, e)
metric = self.parameter['metric']
# early stopping checking
if valid_data[metric] > best_value:
best_value = valid_data[metric]
best_epoch = e
print('\tBest model | {0} of valid set is {1:.3f}'.format(metric, best_value))
bad_counts = 0
# save current best
self.save_checkpoint(best_epoch)
else:
print('\tBest {0} of valid set is {1:.3f} at {2} | bad count is {3}'.format(
metric, best_value, best_epoch, bad_counts))
bad_counts += 1
if bad_counts >= self.early_stopping_patience:
print('\tEarly stopping at epoch %d' % e)
break
print('Training has finished')
print('\tBest epoch is {0} | {1} of valid set is {2:.3f}'.format(best_epoch, metric, best_value))
self.save_best_state_dict(best_epoch)
print('Finish')
def eval(self, istest=False, epoch=None):
self.metaR.eval()
# clear sharing rel_q
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader
else:
data_loader = self.dev_data_loader
data_loader.curr_tri_idx = 0
# initial return data of validation
data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
ranks = []
t = 0
temp = dict()
while True:
# sample all the eval tasks
eval_task, curr_rel = data_loader.next_one_on_eval()
# at the end of sample tasks, a symbol 'EOT' will return
if eval_task == 'EOT':
break
t += 1
_, p_score, n_score = self.do_one_step(eval_task, iseval=True, curr_rel=curr_rel)
x = torch.cat([n_score, p_score], 1).squeeze()
self.rank_predict(data, x, ranks)
# print current temp data dynamically
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.flush()
# print overall evaluation result and return it
for k in data.keys():
data[k] = round(data[k] / t, 3)
if self.parameter['step'] == 'train':
self.logging_training_data(data, epoch)
else:
self.logging_eval_data(data, self.state_dict_file, istest)
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, data['MRR'], data['Hits@10'], data['Hits@5'], data['Hits@1']))
return data
def eval_by_relation(self, istest=False, epoch=None):
self.metaR.eval()
self.metaR.rel_q_sharing = dict()
if istest:
data_loader = self.test_data_loader
else:
data_loader = self.dev_data_loader
data_loader.curr_tri_idx = 0
all_data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
all_t = 0
all_ranks = []
for rel in data_loader.all_rels:
print("rel: {}, num_cands: {}, num_tasks:{}".format(
rel, len(data_loader.rel2candidates[rel]), len(data_loader.tasks[rel][self.few:])))
data = {'MRR': 0, 'Hits@1': 0, 'Hits@5': 0, 'Hits@10': 0}
temp = dict()
t = 0
ranks = []
while True:
eval_task, curr_rel = data_loader.next_one_on_eval_by_relation(rel)
if eval_task == 'EOT':
break
t += 1
_, p_score, n_score = self.do_one_step(eval_task, iseval=True, curr_rel=rel)
x = torch.cat([n_score, p_score], 1).squeeze()
self.rank_predict(data, x, ranks)
for k in data.keys():
temp[k] = data[k] / t
sys.stdout.write("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
sys.stdout.flush()
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
t, temp['MRR'], temp['Hits@10'], temp['Hits@5'], temp['Hits@1']))
for k in data.keys():
all_data[k] += data[k]
all_t += t
all_ranks.extend(ranks)
print('Overall')
for k in all_data.keys():
all_data[k] = round(all_data[k] / all_t, 3)
print("{}\tMRR: {:.3f}\tHits@10: {:.3f}\tHits@5: {:.3f}\tHits@1: {:.3f}\r".format(
all_t, all_data['MRR'], all_data['Hits@10'], all_data['Hits@5'], all_data['Hits@1']))
return all_data