forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetuning.py
297 lines (258 loc) · 11.4 KB
/
finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
import dataclasses
import fire
import random
import torch
import torch.optim as optim
from peft import get_peft_model, prepare_model_for_kbit_training, PeftModel
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
ShardingStrategy
)
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
from torch.optim.lr_scheduler import StepLR
from transformers import (
AutoTokenizer,
LlamaForCausalLM,
LlamaConfig,
)
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
from llama_recipes.configs import fsdp_config as FSDP_CONFIG
from llama_recipes.configs import train_config as TRAIN_CONFIG
from llama_recipes.data.concatenator import ConcatDataset
from llama_recipes.policies import AnyPrecisionAdamW, apply_fsdp_checkpointing
from llama_recipes.utils import fsdp_auto_wrap_policy
from llama_recipes.utils.config_utils import (
update_config,
generate_peft_config,
generate_dataset_config,
get_dataloader_kwargs,
)
from llama_recipes.utils.dataset_utils import get_preprocessed_dataset
from llama_recipes.utils.fsdp_utils import hsdp_device_mesh
from llama_recipes.utils.train_utils import (
train,
freeze_transformer_layers,
setup,
setup_environ_flags,
clear_gpu_cache,
print_model_size,
get_policies,
)
from accelerate.utils import is_xpu_available
def setup_wandb(train_config, fsdp_config, **kwargs):
try:
import wandb
except ImportError:
raise ImportError(
"You are trying to use wandb which is not currently installed. "
"Please install it using pip install wandb"
)
from llama_recipes.configs import wandb_config as WANDB_CONFIG
wandb_config = WANDB_CONFIG()
update_config(wandb_config, **kwargs)
init_dict = dataclasses.asdict(wandb_config)
run = wandb.init(**init_dict)
run.config.update(train_config)
run.config.update(fsdp_config, allow_val_change=True)
return run
def main(**kwargs):
# Update the configuration for the training and sharding process
train_config, fsdp_config = TRAIN_CONFIG(), FSDP_CONFIG()
update_config((train_config, fsdp_config), **kwargs)
# Set the seeds for reproducibility
if is_xpu_available():
torch.xpu.manual_seed(train_config.seed)
torch.manual_seed(train_config.seed)
random.seed(train_config.seed)
if train_config.enable_fsdp:
setup()
# torchrun specific
local_rank = int(os.environ["LOCAL_RANK"])
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
if torch.distributed.is_initialized():
if is_xpu_available():
torch.xpu.set_device(local_rank)
elif torch.cuda.is_available():
torch.cuda.set_device(local_rank)
clear_gpu_cache(local_rank)
setup_environ_flags(rank)
wandb_run = None
if train_config.use_wandb:
if not train_config.enable_fsdp or rank==0:
wandb_run = setup_wandb(train_config, fsdp_config, **kwargs)
# Load the pre-trained model and setup its configuration
use_cache = False if train_config.enable_fsdp else None
if train_config.enable_fsdp and train_config.low_cpu_fsdp:
"""
for FSDP, we can save cpu memory by loading pretrained model on rank0 only.
this avoids cpu oom when loading large models like llama 70B, in which case
model alone would consume 2+TB cpu mem (70 * 4 * 8). This will add some comms
overhead and currently requires latest nightly.
"""
if rank == 0:
model = LlamaForCausalLM.from_pretrained(
train_config.model_name,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
attn_implementation="sdpa" if train_config.use_fast_kernels else None,
)
else:
llama_config = LlamaConfig.from_pretrained(train_config.model_name)
llama_config.use_cache = use_cache
with torch.device("meta"):
model = LlamaForCausalLM(llama_config)
else:
model = LlamaForCausalLM.from_pretrained(
train_config.model_name,
load_in_8bit=True if train_config.quantization else None,
device_map="auto" if train_config.quantization else None,
use_cache=use_cache,
attn_implementation="sdpa" if train_config.use_fast_kernels else None,
)
# Load the tokenizer and add special tokens
tokenizer = AutoTokenizer.from_pretrained(train_config.model_name if train_config.tokenizer_name is None else train_config.tokenizer_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
# If there is a mismatch between tokenizer vocab size and embedding matrix,
# throw a warning and then expand the embedding matrix
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
print("WARNING: Resizing the embedding matrix to match the tokenizer vocab size.")
model.resize_token_embeddings(len(tokenizer))
print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
# Prepare the model for int8 training if quantization is enabled
if train_config.quantization:
model = prepare_model_for_kbit_training(model)
# Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
if train_config.enable_fsdp and fsdp_config.pure_bf16:
model.to(torch.bfloat16)
if train_config.use_peft:
# Load the pre-trained peft model checkpoint and setup its configuration
if train_config.from_peft_checkpoint:
model = PeftModel.from_pretrained(model, train_config.from_peft_checkpoint, is_trainable=True)
peft_config = model.peft_config()
# Generate the peft config and start fine-tuning from original model
else:
peft_config = generate_peft_config(train_config, kwargs)
model = get_peft_model(model, peft_config)
if wandb_run:
wandb_run.config.update(peft_config)
model.print_trainable_parameters()
hsdp_device_mesh_plan = None
if fsdp_config.hsdp and fsdp_config.sharding_strategy == ShardingStrategy.HYBRID_SHARD:
hsdp_device_mesh_plan = hsdp_device_mesh(replica_group_size=fsdp_config.replica_group_size, sharding_group_size=fsdp_config.sharding_group_size)
print("HSDP device mesh is ready")
#setting up FSDP if enable_fsdp is enabled
if train_config.enable_fsdp:
if not train_config.use_peft and train_config.freeze_layers:
freeze_transformer_layers(model, train_config.num_freeze_layers)
mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
device_id = 0
if is_xpu_available():
device_id = torch.xpu.current_device()
elif torch.cuda.is_available():
device_id = torch.cuda.current_device()
model = FSDP(
model,
auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
cpu_offload=CPUOffload(offload_params=True) if fsdp_config.fsdp_cpu_offload else None,
mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
sharding_strategy=fsdp_config.sharding_strategy,
device_mesh=hsdp_device_mesh_plan,
device_id=device_id,
limit_all_gathers=True,
sync_module_states=train_config.low_cpu_fsdp,
param_init_fn=(lambda module: module.to_empty(device=torch.device("cuda"), recurse=False))
if train_config.low_cpu_fsdp and rank != 0 else None,
)
if fsdp_config.fsdp_activation_checkpointing:
apply_fsdp_checkpointing(model)
elif not train_config.quantization and not train_config.enable_fsdp:
if is_xpu_available():
model.to("xpu:0")
elif torch.cuda.is_available():
model.to("cuda")
dataset_config = generate_dataset_config(train_config, kwargs)
# Load and preprocess the dataset for training and validation
dataset_train = get_preprocessed_dataset(
tokenizer,
dataset_config,
split="train",
)
if not train_config.enable_fsdp or rank == 0:
print(f"--> Training Set Length = {len(dataset_train)}")
dataset_val = get_preprocessed_dataset(
tokenizer,
dataset_config,
split="test",
)
if not train_config.enable_fsdp or rank == 0:
print(f"--> Validation Set Length = {len(dataset_val)}")
if train_config.batching_strategy == "packing":
dataset_train = ConcatDataset(dataset_train, chunk_size=train_config.context_length)
train_dl_kwargs = get_dataloader_kwargs(train_config, dataset_train, tokenizer, "train")
# Create DataLoaders for the training and validation dataset
train_dataloader = torch.utils.data.DataLoader(
dataset_train,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
**train_dl_kwargs,
)
eval_dataloader = None
if train_config.run_validation:
if train_config.batching_strategy == "packing":
dataset_val = ConcatDataset(dataset_val, chunk_size=train_config.context_length)
val_dl_kwargs = get_dataloader_kwargs(train_config, dataset_val, tokenizer, "val")
eval_dataloader = torch.utils.data.DataLoader(
dataset_val,
num_workers=train_config.num_workers_dataloader,
pin_memory=True,
**val_dl_kwargs,
)
if len(eval_dataloader) == 0:
raise ValueError("The eval set size is too small for dataloader to load even one batch. Please increase the size of eval set.")
else:
print(f"--> Num of Validation Set Batches loaded = {len(eval_dataloader)}")
# Initialize the optimizer and learning rate scheduler
if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
optimizer = AnyPrecisionAdamW(
model.parameters(),
lr=train_config.lr,
momentum_dtype=torch.bfloat16,
variance_dtype=torch.bfloat16,
use_kahan_summation=False,
weight_decay=train_config.weight_decay,
)
else:
optimizer = optim.AdamW(
model.parameters(),
lr=train_config.lr,
weight_decay=train_config.weight_decay,
)
scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
# Start the training process
results = train(
model,
train_dataloader,
eval_dataloader,
tokenizer,
optimizer,
scheduler,
train_config.gradient_accumulation_steps,
train_config,
fsdp_config if train_config.enable_fsdp else None,
local_rank if train_config.enable_fsdp else None,
rank if train_config.enable_fsdp else None,
wandb_run,
)
if not train_config.enable_fsdp or rank==0:
[print(f'Key: {k}, Value: {v}') for k, v in results.items()]
if train_config.use_wandb:
for k,v in results.items():
wandb_run.summary[k] = v
if __name__ == "__main__":
fire.Fire(main)