-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathnorm2_example.py
executable file
·47 lines (35 loc) · 1.28 KB
/
norm2_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import nobuco
from nobuco.layers.weight import WeightLayer
import torch
from torch import nn
import tensorflow as tf
from tensorflow.lite.python.lite import TFLiteConverterV2
import keras
class MyModule(nn.Module):
def forward(self, x):
outputs = []
for p in [None, 'fro', 0, 1, 2, np.inf, -np.inf]:
for dim in [None, 0, 1, 2, [0, 1], [1, 2], [0, 2]]:
for keepdim in [False, True]:
y = torch.norm(x, p=p, dim=dim, keepdim=keepdim)
outputs.append(y)
return outputs
x = torch.normal(0, 1, size=(2, 3, 4, 5))
pytorch_module = MyModule().eval()
keras_model = nobuco.pytorch_to_keras(
pytorch_module,
args=[x],
inputs_channel_order=nobuco.ChannelOrder.TENSORFLOW,
)
model_path = 'norm2_example'
keras_model.save(model_path + '.h5')
print('Model saved')
custom_objects = {'WeightLayer': WeightLayer}
keras_model_restored = keras.models.load_model(model_path + '.h5', custom_objects=custom_objects)
print('Model loaded')
converter = TFLiteConverterV2.from_keras_model(keras_model)
converter.target_ops = [tf.lite.OpsSet.SELECT_TF_OPS, tf.lite.OpsSet.TFLITE_BUILTINS]
tflite_model = converter.convert()
with open(model_path + '.tflite', 'wb') as f:
f.write(tflite_model)