-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcollect_expert_data.py
63 lines (58 loc) · 2.81 KB
/
collect_expert_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
from utils import log_trajectory_statistics
from envs.envs import (ExpertInvertedPendulumEnv, AgentInvertedPendulumEnv, ExpertInvertedDoublePendulumEnv,
AgentInvertedDoublePendulumEnv, ReacherEasyEnv, TiltedReacherEasyEnv, ThreeReacherEasyEnv,
Tilted3ReacherEasyEnv, ExpertHalfCheetahEnv, LockedLegsHalfCheetahEnv, HopperEnv,
HopperFlexibleEnv)
from envs.manipulation_envs import PusherEnv, PusherHumanSimEnv, StrikerEnv, StrikerHumanSimEnv
from samplers import Sampler
from utils import save_expert_trajectories
def collect_expert_data(agent, env_name, max_timesteps=40000, expert_samples_location='expert_data'):
"""Collect and save demonstrations with trained expert agent.
Parameters
----------
agent : Trained expert agent.
env_name : Source environment to collect the demonstrations.
max_timesteps : Maximum number of visual observations to collect, default is 40000.
expert_samples_location : Folder to save the expert demonstrations collected.
"""
if env_name == 'InvertedPendulum-v2':
expert_env = ExpertInvertedPendulumEnv()
episode_limit = 200
elif env_name == 'InvertedDoublePendulum-v2':
expert_env = ExpertInvertedDoublePendulumEnv()
episode_limit = 50
elif env_name == 'ThreeReacherEasy-v2':
expert_env = ThreeReacherEasyEnv()
episode_limit = 50
elif env_name == 'ReacherEasy-v2':
expert_env = ReacherEasyEnv()
episode_limit = 50
elif env_name == 'Hopper-v2':
expert_env = HopperEnv()
episode_limit = 200
elif env_name == 'HalfCheetah-v2':
expert_env = ExpertHalfCheetahEnv()
episode_limit = 200
elif env_name == 'PusherHumanSim-v2':
expert_env = PusherHumanSimEnv()
episode_limit = 200
elif env_name == 'StrikerHumanSim-v2':
expert_env = StrikerHumanSimEnv()
episode_limit = 200
else:
print('Please select one of the implemented environments:'
'(InvertedPendulum-v2, InvertedDoublePendulum-v2, ReacherEasy-v2,'
'ThreeReacherEasy-v2, Hopper-v2, HalfCheetah-v2, PusherHumanSim-v2,'
'StrikerHumanSim-v2)')
raise NotImplementedError
episodes_n = int(max_timesteps // episode_limit)
saver_sampler = Sampler(expert_env, episode_limit=episode_limit,
init_random_samples=0, visual_env=True)
traj = saver_sampler.sample_test_trajectories(agent, 0.0,
episodes_n, False)
log_trajectory_statistics(traj['ret'])
os.makedirs(expert_samples_location + '/' + env_name)
save_expert_trajectories(traj, env_name, expert_samples_location,
visual_data=True)
print('Expert trajectories successfully saved.')