-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathk_means.py
77 lines (44 loc) · 2.27 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import matplotlib.pyplot as plt
from utils import generate_clusterization_data
"""K-means"""
class KMeans():
def __init__(self, k):
self.k = k
self.centroids = []
self.data = None
def euclidean_distance(self, vector1, vector2):
return np.linalg.norm(vector1 - vector2)
def initialize_centroids(self):
# k-means++ centroids initialization
self.centroids.append(self.data[np.random.randint(len(self.data))])
for _ in range(self.k - 1):
min_distances = []
for sample in self.data:
min_distance = np.asfarray([self.euclidean_distance(sample, centroid) for centroid in self.centroids]).min()
min_distances.append(min_distance)
self.centroids.append(self.data[np.argmax(min_distances)])
def fit(self, data):
self.data = data
self.initialize_centroids()
previous_centroids = None
while np.not_equal(self.centroids, previous_centroids).any():
previous_centroids = self.centroids.copy()
clusters_per_centroids = [[] for _ in range(self.k)]
for sample in self.data:
distances = np.asfarray([self.euclidean_distance(sample, centroid) for centroid in self.centroids])
clusters_per_centroids[np.argmin(distances)].append(sample)
self.centroids = [np.mean(cluster, axis=0) for cluster in clusters_per_centroids]
return np.asfarray(self.centroids)
def predict(self, sample):
distances = np.asfarray([self.euclidean_distance(sample, centroid) for centroid in self.centroids])
return np.argmin(distances)
if __name__ == '__main__':
X_train, y_train = generate_clusterization_data(n_clusters = 3)
k_means = KMeans(k = 3)
centroids = k_means.fit(X_train)
plt.scatter(X_train[:,0], X_train[:,1], s = 40, c = y_train, cmap = plt.cm.spring, edgecolors = 'k')
plt.scatter(centroids[:,0], centroids[:,1], s = 200, color = 'red' , marker = '*', edgecolors = 'k', label = 'centroids')
plt.legend(loc=2)
plt.grid(True, linestyle='-', color='0.75')
plt.show()