forked from triton-inference-server/server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
373 lines (327 loc) · 16.2 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Multistage build.
#
ARG BASE_IMAGE=nvcr.io/nvidia/tensorrtserver:19.07-py3
ARG PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:19.07-py3
ARG TENSORFLOW_IMAGE=nvcr.io/nvidia/tensorflow:19.07-py3
############################################################################
## TensorFlow stage: Use TensorFlow container to build
############################################################################
FROM ${TENSORFLOW_IMAGE} AS trtserver_tf
# Modify the TF model loader to allow us to set the default GPU for
# multi-GPU support
COPY tools/patch/tensorflow /tmp/trtis/tools/patch/tensorflow
RUN sha1sum -c /tmp/trtis/tools/patch/tensorflow/checksums && \
patch -i /tmp/trtis/tools/patch/tensorflow/cc/saved_model/loader.cc \
/opt/tensorflow/tensorflow-source/tensorflow/cc/saved_model/loader.cc && \
patch -i /tmp/trtis/tools/patch/tensorflow/BUILD \
/opt/tensorflow/tensorflow-source/tensorflow/BUILD && \
patch -i /tmp/trtis/tools/patch/tensorflow/tf_version_script.lds \
/opt/tensorflow/tensorflow-source/tensorflow/tf_version_script.lds && \
patch -i /tmp/trtis/tools/patch/tensorflow/nvbuild.sh \
/opt/tensorflow/nvbuild.sh && \
patch -i /tmp/trtis/tools/patch/tensorflow/nvbuildopts \
/opt/tensorflow/nvbuildopts && \
patch -i /tmp/trtis/tools/patch/tensorflow/bazel_build.sh \
/opt/tensorflow/bazel_build.sh
# Copy tensorflow_backend_tf into TensorFlow so it builds into the
# monolithic libtensorflow_cc library. We want tensorflow_backend_tf
# to build against the TensorFlow protobuf since it interfaces with
# that code.
COPY src/backends/tensorflow/tensorflow_backend_tf.* \
/opt/tensorflow/tensorflow-source/tensorflow/
# Build TensorFlow library for TRTIS
WORKDIR /opt/tensorflow
RUN ./nvbuild.sh --python3.6
############################################################################
## PyTorch stage: Use PyTorch container for Caffe2 and libtorch
############################################################################
FROM ${PYTORCH_IMAGE} AS trtserver_caffe2
# Copy netdef_backend_c2 into Caffe2 core so it builds into the
# libtorch library. We want netdef_backend_c2 to build against the
# Caffe2 protobuf since it interfaces with that code.
COPY src/backends/caffe2/netdef_backend_c2.* \
/opt/pytorch/pytorch/caffe2/core/
# Build same as in pytorch container... except for the NO_DISTRIBUTED
# line where we turn off features not needed for trtserver This will
# build the libraries needed by the Caffe2 NetDef backend and the
# PyTorch libtorch backend.
WORKDIR /opt/pytorch
RUN pip uninstall -y torch
RUN cd pytorch && \
TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5+PTX" \
CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
USE_DISTRIBUTED=0 USE_MIOPEN=0 USE_NCCL=0 \
USE_OPENCV=0 USE_LEVELDB=0 USE_LMDB=0 USE_REDIS=0 \
BUILD_TEST=0 \
pip install --no-cache-dir -v .
############################################################################
## Onnx Runtime stage: Build Onnx Runtime on CUDA 10, CUDNN 7
############################################################################
FROM ${BASE_IMAGE} AS trtserver_onnx
# Currently the prebuilt Onnx Runtime library is built on CUDA 9, thus it
# needs to be built from source
# Onnx Runtime release version
ARG ONNX_RUNTIME_VERSION=0.4.0
# Get release version of Onnx Runtime
WORKDIR /workspace
RUN apt-get update && apt-get install -y --no-install-recommends git
# Check out stable commit on master until new release
# to support cloud-based filesystems
RUN git clone --recursive https://github.com/Microsoft/onnxruntime && \
(cd onnxruntime && \
git checkout 2f698bd54b713bb87dbd0bbb913e94bcf7fd480c && \
git submodule update)
ENV PATH="/opt/cmake/bin:${PATH}"
ARG SCRIPT_DIR=/workspace/onnxruntime/tools/ci_build/github/linux/docker/scripts
# Modify install dependencies to corresponding packages in Ubuntu 18.04
RUN sed -i "s/libicu55/libicu60/" ${SCRIPT_DIR}/install_ubuntu.sh && \
sed -i "s/libpng16/libpng/" ${SCRIPT_DIR}/install_ubuntu.sh && \
sed -i "s/libprotobuf9v5/libprotobuf10/" ${SCRIPT_DIR}/install_ubuntu.sh && \
sed -i "s/libcurl3/libcurl4/" ${SCRIPT_DIR}/install_ubuntu.sh && \
sed -i "s/3\.5/3.6/" ${SCRIPT_DIR}/install_ubuntu.sh
RUN cp -r ${SCRIPT_DIR} /tmp/scripts && \
${SCRIPT_DIR}/install_ubuntu.sh && ${SCRIPT_DIR}/install_deps.sh
# Allow configure to pick up GDK and CuDNN where it expects it.
# (Note: $CUDNN_VERSION is defined by NVidia's base image)
RUN _CUDNN_VERSION=$(echo $CUDNN_VERSION | cut -d. -f1-2) && \
mkdir -p /usr/local/cudnn-$_CUDNN_VERSION/cuda/include && \
ln -s /usr/include/cudnn.h /usr/local/cudnn-$_CUDNN_VERSION/cuda/include/cudnn.h && \
mkdir -p /usr/local/cudnn-$_CUDNN_VERSION/cuda/lib64 && \
ln -s /etc/alternatives/libcudnn_so /usr/local/cudnn-$_CUDNN_VERSION/cuda/lib64/libcudnn.so
# Build and Install LLVM
ARG LLVM_VERSION=6.0.1
RUN cd /tmp && \
wget --no-verbose http://releases.llvm.org/$LLVM_VERSION/llvm-$LLVM_VERSION.src.tar.xz && \
xz -d llvm-$LLVM_VERSION.src.tar.xz && \
tar xvf llvm-$LLVM_VERSION.src.tar && \
cd llvm-$LLVM_VERSION.src && \
mkdir -p build && \
cd build && \
cmake .. -DCMAKE_BUILD_TYPE=Release && \
cmake --build . -- -j$(nproc) && \
cmake -DCMAKE_INSTALL_PREFIX=/usr/local/llvm-$LLVM_VERSION -DBUILD_TYPE=Release -P cmake_install.cmake && \
cd /tmp && \
rm -rf llvm*
ENV LD_LIBRARY_PATH /usr/local/openblas/lib:$LD_LIBRARY_PATH
# Build files will be in /workspace/build
ARG COMMON_BUILD_ARGS="--skip_submodule_sync --parallel --build_shared_lib --use_openmp"
RUN mkdir -p /workspace/build
RUN python3 /workspace/onnxruntime/tools/ci_build/build.py --build_dir /workspace/build \
--config Release $COMMON_BUILD_ARGS \
--use_cuda \
--cuda_home /usr/local/cuda \
--cudnn_home /usr/local/cudnn-$(echo $CUDNN_VERSION | cut -d. -f1-2)/cuda \
--update \
--build
############################################################################
## Build stage: Build inference server
############################################################################
FROM ${BASE_IMAGE} AS trtserver_build
ARG TRTIS_VERSION=1.5.0dev
ARG TRTIS_CONTAINER_VERSION=19.08dev
# libgoogle-glog0v5 is needed by caffe2 libraries.
RUN apt-get update && \
apt-get install -y --no-install-recommends \
software-properties-common \
autoconf \
automake \
build-essential \
cmake \
git \
libgoogle-glog0v5 \
libre2-dev \
libssl-dev \
libtool
# libcurl4-openSSL-dev is needed for GCS
RUN if [ $(cat /etc/os-release | grep 'VERSION_ID="16.04"' | wc -l) -ne 0 ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libcurl3-dev; \
elif [ $(cat /etc/os-release | grep 'VERSION_ID="18.04"' | wc -l) -ne 0 ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libcurl4-openssl-dev \
zlib1g-dev; \
else \
echo "Ubuntu version must be either 16.04 or 18.04" && \
exit 1; \
fi
# TensorFlow libraries. Install the monolithic libtensorflow_cc and
# create a link libtensorflow_framework.so -> libtensorflow_cc.so so
# that custom tensorflow operations work correctly. Custom TF
# operations link against libtensorflow_framework.so so it must be
# present (and its functionality is provided by libtensorflow_cc.so).
COPY --from=trtserver_tf \
/usr/local/lib/tensorflow/libtensorflow_cc.so /opt/tensorrtserver/lib/
RUN cd /opt/tensorrtserver/lib && \
ln -sf libtensorflow_cc.so libtensorflow_framework.so.1 && \
ln -sf libtensorflow_cc.so libtensorflow_framework.so && \
ln -sf libtensorflow_cc.so libtensorflow_cc.so.1
# Caffe2 libraries
COPY --from=trtserver_caffe2 \
/opt/conda/lib/python3.6/site-packages/torch/lib/libcaffe2_detectron_ops_gpu.so \
/opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 \
/opt/conda/lib/python3.6/site-packages/torch/lib/libc10.so \
/opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 \
/opt/conda/lib/python3.6/site-packages/torch/lib/libc10_cuda.so \
/opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_avx2.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_core.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_def.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_gnu_thread.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_intel_lp64.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_rt.so /opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/libmkl_vml_def.so /opt/tensorrtserver/lib/
# LibTorch headers and library
COPY --from=trtserver_caffe2 /opt/conda/lib/python3.6/site-packages/torch/include \
/opt/tensorrtserver/include/torch
COPY --from=trtserver_caffe2 /opt/conda/lib/python3.6/site-packages/torch/lib/libtorch.so \
/opt/tensorrtserver/lib/
COPY --from=trtserver_caffe2 /opt/conda/lib/python3.6/site-packages/torch/lib/libthnvrtc.so \
/opt/tensorrtserver/lib/
# Onnx Runtime headers and library
ARG ONNX_RUNTIME_VERSION=0.4.0
COPY --from=trtserver_onnx /workspace/onnxruntime/include/onnxruntime \
/opt/tensorrtserver/include/onnxruntime/
COPY --from=trtserver_onnx /workspace/build/Release/libonnxruntime.so.${ONNX_RUNTIME_VERSION} \
/opt/tensorrtserver/lib/
RUN cd /opt/tensorrtserver/lib && \
ln -sf libonnxruntime.so.${ONNX_RUNTIME_VERSION} libonnxruntime.so
# Copy entire repo into container even though some is not needed for
# build itself... because we want to be able to copyright check on
# files that aren't directly needed for build.
WORKDIR /workspace
RUN rm -fr *
COPY . .
# Build the server.
#
# - Need to find CUDA stubs if they are available since some backends
# may need to link against them. This is identical to the login in TF
# container nvbuild.sh
RUN LIBCUDA_FOUND=$(ldconfig -p | grep -v compat | awk '{print $1}' | grep libcuda.so | wc -l) && \
if [[ "$LIBCUDA_FOUND" -eq 0 ]]; then \
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64/stubs; \
ln -fs /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1; \
fi && \
echo $LD_LIBRARY_PATH && \
rm -fr builddir && mkdir -p builddir && \
(cd builddir && \
cmake -DCMAKE_BUILD_TYPE=Release \
-DTRTIS_ENABLE_METRICS=ON \
-DTRTIS_ENABLE_GCS=ON\
-DTRTIS_ENABLE_S3=ON\
-DTRTIS_ENABLE_CUSTOM=ON \
-DTRTIS_ENABLE_TENSORFLOW=ON \
-DTRTIS_ENABLE_TENSORRT=ON \
-DTRTIS_ENABLE_CAFFE2=ON \
-DTRTIS_ENABLE_ONNXRUNTIME=ON \
-DTRTIS_ENABLE_PYTORCH=ON \
-DTRTIS_ONNXRUNTIME_INCLUDE_PATHS="/opt/tensorrtserver/include/onnxruntime" \
-DTRTIS_PYTORCH_INCLUDE_PATHS="/opt/tensorrtserver/include/torch" \
-DTRTIS_EXTRA_LIB_PATHS="/opt/tensorrtserver/lib" \
../build && \
make -j16 trtis && \
mkdir -p /opt/tensorrtserver/include && \
cp -r trtis/install/bin /opt/tensorrtserver/. && \
cp -r trtis/install/lib /opt/tensorrtserver/. && \
cp -r trtis/install/include /opt/tensorrtserver/include/trtserver) && \
(cd /opt/tensorrtserver && ln -sf /workspace/qa qa)
ENV TENSORRT_SERVER_VERSION ${TRTIS_VERSION}
ENV NVIDIA_TENSORRT_SERVER_VERSION ${TRTIS_CONTAINER_VERSION}
ENV LD_LIBRARY_PATH /opt/tensorrtserver/lib:${LD_LIBRARY_PATH}
ENV PATH /opt/tensorrtserver/bin:${PATH}
COPY nvidia_entrypoint.sh /opt/tensorrtserver
ENTRYPOINT ["/opt/tensorrtserver/nvidia_entrypoint.sh"]
############################################################################
## Production stage: Create container with just inference server executable
############################################################################
FROM ${BASE_IMAGE}
ARG TRTIS_VERSION=1.5.0dev
ARG TRTIS_CONTAINER_VERSION=19.08dev
ENV TENSORRT_SERVER_VERSION ${TRTIS_VERSION}
ENV NVIDIA_TENSORRT_SERVER_VERSION ${TRTIS_CONTAINER_VERSION}
LABEL com.nvidia.tensorrtserver.version="${TENSORRT_SERVER_VERSION}"
ENV LD_LIBRARY_PATH /opt/tensorrtserver/lib:${LD_LIBRARY_PATH}
ENV PATH /opt/tensorrtserver/bin:${PATH}
ENV TF_ADJUST_HUE_FUSED 1
ENV TF_ADJUST_SATURATION_FUSED 1
ENV TF_ENABLE_WINOGRAD_NONFUSED 1
ENV TF_AUTOTUNE_THRESHOLD 2
# Needed by Caffe2 libraries to avoid:
# Intel MKL FATAL ERROR: Cannot load libmkl_intel_thread.so
ENV MKL_THREADING_LAYER GNU
# Create a user that can be used to run the tensorrt-server as
# non-root. Make sure that this user to given ID 1000.
ENV TENSORRT_SERVER_USER=tensorrt-server
RUN id -u $TENSORRT_SERVER_USER > /dev/null 2>&1 || \
useradd $TENSORRT_SERVER_USER && \
[ `id -u $TENSORRT_SERVER_USER` -eq 1000 ] && \
[ `id -g $TENSORRT_SERVER_USER` -eq 1000 ]
# libgoogle-glog0v5 is needed by caffe2 libraries.
# libcurl is needed for GCS
RUN if [ $(cat /etc/os-release | grep 'VERSION_ID="16.04"' | wc -l) -ne 0 ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libcurl3-dev \
libgoogle-glog0v5 \
libre2-1v5; \
elif [ $(cat /etc/os-release | grep 'VERSION_ID="18.04"' | wc -l) -ne 0 ]; then \
apt-get update && \
apt-get install -y --no-install-recommends \
libcurl4-openssl-dev \
libgoogle-glog0v5 \
libre2-4; \
else \
echo "Ubuntu version must be either 16.04 or 18.04" && \
exit 1; \
fi
WORKDIR /opt/tensorrtserver
RUN rm -fr /opt/tensorrtserver/*
COPY LICENSE .
COPY --from=trtserver_onnx /workspace/onnxruntime/LICENSE LICENSE.onnxruntime
COPY --from=trtserver_tf /opt/tensorflow/tensorflow-source/LICENSE LICENSE.tensorflow
COPY --from=trtserver_caffe2 /opt/pytorch/pytorch/LICENSE LICENSE.pytorch
COPY --from=trtserver_build /opt/tensorrtserver/bin/trtserver bin/
COPY --from=trtserver_build /opt/tensorrtserver/lib lib
COPY --from=trtserver_build /opt/tensorrtserver/include include
RUN chmod ugo-w+rx /opt/tensorrtserver/lib/*.so
# Extra defensive wiring for CUDA Compat lib
RUN ln -sf ${_CUDA_COMPAT_PATH}/lib.real ${_CUDA_COMPAT_PATH}/lib \
&& echo ${_CUDA_COMPAT_PATH}/lib > /etc/ld.so.conf.d/00-cuda-compat.conf \
&& ldconfig \
&& rm -f ${_CUDA_COMPAT_PATH}/lib
COPY nvidia_entrypoint.sh /opt/tensorrtserver
ENTRYPOINT ["/opt/tensorrtserver/nvidia_entrypoint.sh"]
ARG NVIDIA_BUILD_ID
ENV NVIDIA_BUILD_ID ${NVIDIA_BUILD_ID:-<unknown>}
LABEL com.nvidia.build.id="${NVIDIA_BUILD_ID}"
ARG NVIDIA_BUILD_REF
LABEL com.nvidia.build.ref="${NVIDIA_BUILD_REF}"