-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
53 lines (44 loc) · 1.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import nltk
from nltk import pos_tag
from nltk.tokenize import word_tokenize
import numpy as np
import imageio
# Ensure you have the necessary NLTK resources downloaded
def find_keywords(text, pos_tags=['NN', 'NNS', 'NNP', 'NNPS', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']):
"""
Find the nouns and verbs in a given text.
"""
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
words = word_tokenize(text)
tagged = pos_tag(words)
idx = []
for i, (word, pos) in enumerate(tagged):
if word in ['view', 'is']:
continue
if pos in pos_tags or word in ['left', 'right', 'top', 'bottom']:
idx.append(i)
return idx
def export_to_video(video_frames, output_video_path, fps = 24):
# Ensure all frames are NumPy arrays and determine video dimensions from the first frame
assert all(isinstance(frame, np.ndarray) for frame in video_frames), "All video frames must be NumPy arrays."
h, w, _ = video_frames[0].shape
# Create a video file at the specified path and write frames to it
with imageio.get_writer(output_video_path, fps=fps, format='mp4') as writer:
for frame in video_frames:
writer.append_data(frame)
return output_video_path
def split_prompts(prompt):
if " and " in prompt:
prompt = "|".join(prompt.split(" and "))
if " on " in prompt:
phrases = prompt.split(" on ")
phrases[-1] = "on " + phrases[-1]
prompt = "|".join(phrases)
if " in " in prompt:
phrases = prompt.split(" in ")
phrases[-1] = "in " + phrases[-1]
prompt = "|".join(phrases)
if ", " in prompt:
prompt = "|".join(prompt.split(", "))
return prompt