-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
96 lines (76 loc) · 3.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import math
import numpy as np
import cv2 as cv
import keras
import tensorflow as tf
from keras.applications import mobilenet
from keras.applications.mobilenet import MobileNet
from keras.applications.mobilenet import preprocess_input, decode_predictions
from keras import optimizers
from keras.preprocessing import image
from keras.utils import to_categorical
import tensorflow_datasets as tfds
# Load MobileNet model
model = MobileNet(weights='imagenet')
opt = optimizers.Adam(lr=0.001)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
# Fetch the dataset directly
imagenet = tfds.image.Imagenet2012()
## or by string name
# imagenet = tfds.builder('imagenet2012')
# Describe the dataset with DatasetInfo
C = imagenet.info.features['label'].num_classes
Ntrain = imagenet.info.splits['train'].num_examples
Nvalidation = imagenet.info.splits['validation'].num_examples
Nbatch = 32
assert C == 1000
assert Ntrain == 1281167
assert Nvalidation == 50000
# Download the data, prepare it, and write it to disk
imagenet.download_and_prepare()
# Load data from disk as tf.data.Datasets
datasets = imagenet.as_dataset()
train_dataset, validation_dataset = datasets['train'], datasets['validation']
assert isinstance(train_dataset, tf.data.Dataset)
assert isinstance(validation_dataset, tf.data.Dataset)
def imagenet_generator(dataset, batch_size=32, num_classes=1000, is_training=False):
images = np.zeros((batch_size, 224, 224, 3))
labels = np.zeros((batch_size, num_classes))
while True:
count = 0
for sample in tfds.as_numpy(dataset):
image = sample["image"]
label = sample["label"]
images[count % batch_size] = mobilenet.preprocess_input(np.expand_dims(cv.resize(image, (224, 224)), 0))
labels[count % batch_size] = np.expand_dims(to_categorical(label, num_classes=num_classes), 0)
count += 1
if (count % batch_size == 0):
yield images, labels
# Infer on ImageNet
labels = np.zeros((Nvalidation))
pred_labels = np.zeros((Nvalidation, C))
pred_labels_new = np.zeros((Nvalidation, C))
score = model.evaluate_generator(imagenet_generator(validation_dataset, batch_size=32),
steps=Nvalidation // Nbatch,
verbose=1)
print("Evaluation Result of Original Model on ImageNet2012: " + str(score))
# Train on ImageNet
checkpoint_path = "Mobilenet/cp-{epoch:04d}.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
os.makedirs(checkpoint_dir, exist_ok=True)
cp_callback = keras.callbacks.ModelCheckpoint(
checkpoint_path, verbose=1, save_weights_only=True,
# Save weights, every 1-epoch
period=1)
csv_logger = keras.callbacks.CSVLogger('MobileNet_training.csv')
print("Starting to train Modified MobileNet...")
epochs = 5
model.fit_generator(imagenet_generator(train_dataset, batch_size=Nbatch, is_training=True),
steps_per_epoch=Ntrain // Nbatch,
epochs=epochs,
validation_data=imagenet_generator(validation_dataset, batch_size=Nbatch),
validation_steps=Nvalidation // Nbatch,
verbose=1,
callbacks=[cp_callback, csv_logger])
model.save("MobileNet.h5")