forked from danaj/Math-Prime-Util
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsieve.h
242 lines (220 loc) · 8.09 KB
/
sieve.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#ifndef MPU_SIEVE_H
#define MPU_SIEVE_H
#include "ptypes.h"
#define FUNC_ctz 1
#include "util.h"
extern unsigned char* sieve_erat30(UV end);
extern int sieve_segment_partial(unsigned char* mem, UV startd, UV endd, UV depth);
extern int sieve_segment(unsigned char* mem, UV startd, UV endd);
extern void* start_segment_primes(UV low, UV high, unsigned char** segmentmem);
extern int next_segment_primes(void* vctx, UV* base, UV* low, UV* high);
extern void end_segment_primes(void* vctx);
/* Generate primes P[0] = 2, P[1] = 3, P[2] = 5, .... */
extern UV range_prime_sieve(UV** list, UV lo, UV hi);
/* Generate 32-bit primes up to n.
* The first <offset> entries will be zero, followed by 2, 3, 5, 7, 11, ...
* Returns the count of primes created, irrespective of the offset.
* Hence, the last prime will be in P[offset+count-1].
*/
extern uint32_t range_prime_sieve_32(uint32_t** list, uint32_t n, uint32_t offset);
static const UV wheel30[] = {1, 7, 11, 13, 17, 19, 23, 29};
/* Used for moving between primes */
static const unsigned char nextwheel30[30] = {
1, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17,
17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 1 };
static const unsigned char prevwheel30[30] = {
29, 29, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 11, 11, 13,
13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23 };
/* The bit mask within a byte */
static const unsigned char masktab30[30] = {
0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 8, 0,
0, 0, 16, 0, 32, 0, 0, 0, 64, 0, 0, 0, 0, 0,128 };
/* Inverse of masktab30 */
static const unsigned char imask30[129] = {
0,1,7,0,11,0,0,0,13,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,29};
/* Add this to a number and you'll ensure you're on a wheel location */
static const unsigned char distancewheel30[30] =
{1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0};
/* add this to n to get to the next wheel location */
static const unsigned char wheeladvance30[30] =
{1,6,5,4,3,2,1,4,3,2,1,2,1,4,3,2,1,2,1,4,3,2,1,6,5,4,3,2,1,2};
/* subtract this from n to get to the previous wheel location */
static const unsigned char wheelretreat30[30] =
{1,2,1,2,3,4,5,6,1,2,3,4,1,2,1,2,3,4,1,2,1,2,3,4,1,2,3,4,5,6};
/* Given a sieve byte, this indicates the first zero */
static const unsigned char nextzero30[256] =
{0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,
0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,
0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,
0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,
0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,
0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,
0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,8};
/* At this m (p-30*(p/30)), OR with this to clear previous entries */
static const unsigned char clearprev30[30] =
{ 0, 0, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 7, 7, 15,
15, 15, 15, 31, 31, 63, 63, 63, 63,127,127,127,127,127,127};
#ifdef FUNC_is_prime_in_sieve
static int is_prime_in_sieve(const unsigned char* sieve, UV p) {
UV d = p/30;
UV m = p - d*30;
/* If m isn't part of the wheel, we return 0 */
return ( (masktab30[m] != 0) && ((sieve[d] & masktab30[m]) == 0) );
}
#endif
#ifdef FUNC_next_prime_in_sieve
/* Will return 0 if it goes past lastp */
static UV next_prime_in_sieve(const unsigned char* sieve, UV p, UV lastp) {
UV d, m;
unsigned char s;
if (p < 7)
return (p < 2) ? 2 : (p < 3) ? 3 : (p < 5) ? 5 : 7;
p++;
if (p >= lastp) return 0;
d = p/30;
m = p - d*30;
s = sieve[d] | clearprev30[m];
while (s == 0xFF) {
d++;
if (d*30 >= lastp) return 0;
s = sieve[d];
}
return d*30 + wheel30[nextzero30[s]];
}
#endif
#ifdef FUNC_prev_prime_in_sieve
static UV prev_prime_in_sieve(const unsigned char* sieve, UV p) {
UV d, m;
if (p <= 7)
return (p <= 2) ? 0 : (p <= 3) ? 2 : (p <= 5) ? 3 : 5;
d = p/30;
m = p - d*30;
do {
m = prevwheel30[m];
if (m==29) { if (d == 0) return 0; d--; }
} while (sieve[d] & masktab30[m]);
return(d*30+m);
}
#endif
#if 0
/* Useful macros for the wheel-30 sieve array */
#define START_DO_FOR_EACH_SIEVE_PRIME(sieve, base, a, b) \
{ \
const unsigned char* sieve_ = sieve; \
UV base_ = base; \
UV p = a-base_; \
UV l_ = b; \
UV d_ = p/30; \
UV lastd_ = (l_-base_)/30; \
unsigned char bit_, s_ = sieve_[d_] | clearprev30[p-d_*30]; \
base_ += d_*30; \
while (1) { \
if (s_ == 0xFF) { \
do { \
base_ += 30; d_++; \
if (d_ > lastd_) break; \
s_ = sieve_[d_]; \
} while (s_ == 0xFF); \
if (d_ > lastd_) break; \
} \
bit_ = nextzero30[s_]; \
s_ |= 1 << bit_; \
p = base_ + wheel30[bit_]; \
if (p > l_ || p < base_) break; /* handle overflow */ \
{
#define END_DO_FOR_EACH_SIEVE_PRIME \
} \
} \
}
#else
/* Extract word at a time, good suggestion from Kim Walisch */
static const unsigned char wheel240[] = {1,7,11,13,17,19,23,29,31,37,41,43,47,49,53,59,61,67,71,73,77,79,83,89,91,97,101,103,107,109,113,119,121,127,131,133,137,139,143,149,151,157,161,163,167,169,173,179,181,187,191,193,197,199,203,209,211,217,221,223,227,229,233,239};
#define START_DO_FOR_EACH_SIEVE_PRIME(sieve, base, a, b) \
{ \
const UV* sieve_ = (const UV*)sieve; /* word ptr to sieve */ \
const UV nperw_ = 30*sizeof(UV); /* nums per word */ \
UV base_ = base; /* start of sieve n */ \
UV b_ = a; /* begin value n */ \
UV f_ = b; /* final value n */ \
UV begw_ = (b_-base_)/nperw_; /* first word */ \
UV endw_ = (f_-base_)/nperw_; /* last word */ \
UV sw_, tz_, p; \
base_ += begw_*nperw_; \
while (begw_ <= endw_) { \
sw_ = ~ LEUV(sieve_[begw_]); \
while (sw_ != 0) { \
tz_ = ctz(sw_); \
sw_ &= ~(UVCONST(1) << tz_); \
p = base_ + wheel240[tz_]; \
if (p > f_) break; \
if (p >= b_) {
#define END_DO_FOR_EACH_SIEVE_PRIME \
} \
} \
begw_++; \
base_ += nperw_; \
} \
}
#endif
#define START_DO_FOR_EACH_PRIME(a, b) \
{ \
const unsigned char* sieve_; \
UV p = a; \
UV l_ = b; \
UV d_ = p/30; \
UV lastd_ = l_/30; \
unsigned char s_, bit_; \
get_prime_cache(l_, &sieve_); \
if (p > 1 && p < 7) p--; \
s_ = sieve_[d_] | clearprev30[p-d_*30]; \
while (1) { \
if (p < 5) { \
p = (p < 2) ? 2 : (p < 3) ? 3 : 5; \
} else { \
if (s_ == 0xFF) { \
do { \
d_++; \
if (d_ > lastd_) break; \
s_ = sieve_[d_]; \
} while (s_ == 0xFF); \
if (d_ > lastd_) break; \
} \
bit_ = nextzero30[s_]; \
s_ |= 1 << bit_; \
p = d_*30 + wheel30[bit_]; \
if (p < d_*30) break; \
} \
if (p > l_) break; \
{ \
#define RETURN_FROM_EACH_PRIME(retstmt) \
do { release_prime_cache(sieve_); retstmt; } while (0)
#define END_DO_FOR_EACH_PRIME \
} \
} \
release_prime_cache(sieve_); \
}
#define SIMPLE_FOR_EACH_PRIME(a, b) \
{ \
UV p_ = a; \
UV l_ = b; \
if (p_ > 0) p_--; \
while (1) { \
UV p = (p_ = next_prime(p_)); \
if (p > l_ || p == 0) break; \
{ \
#define END_SIMPLE_FOR_EACH_PRIME \
} \
} \
}
/* Mark at <first>, but if that is less than <lo>, then use the first multiple
* of <p> at or after lo.
*
* I.e. the result n is n = p2 + k*p >= lo with the smallest possible k.
* TODO: this assumes first is a multiple of p. Fix. */
#define P_GT_LO(first,p,lo) ( ((first)>=(lo)) ? (first) : (lo)+(((p)-((lo)%(p)))%(p)) )
/* As above, but as an offset from lo, so returns 0+ */
#define P_GT_LO_0(first,p,lo) ( ((first)>=(lo)) ? ((first)-(lo)) : (((p)-((lo)%(p)))%(p)) )
#endif