forked from danaj/Math-Prime-Util
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalmost_primes.c
979 lines (854 loc) · 34.8 KB
/
almost_primes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
/******************************************************************************/
/* ALMOST PRIMES */
/******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "ptypes.h"
#include "constants.h"
#define FUNC_isqrt 1
#define FUNC_ctz 1
#include "util.h"
#include "cache.h"
#include "sieve.h"
#include "prime_counts.h"
#include "prime_count_cache.h"
#include "semi_primes.h"
#include "inverse_interpolate.h"
#include "almost_primes.h"
/******************************************************************************/
/* KAP UTILITY */
/******************************************************************************/
#if BITS_PER_WORD == 32
static uint32_t const _pow3[21] = {1,3,9,27,81,243,729,2187,6561,19683,59049,177147,531441,1594323,4782969,14348907,43046721,129140163,387420489,1162261467,3486784401U};
#else
static UV const _pow3[41] = {1,3,9,27,81,243,729,2187,6561,19683,59049,177147,531441,1594323,4782969,14348907,43046721,129140163,387420489,1162261467,3486784401U,UVCONST(10460353203),UVCONST(31381059609),UVCONST(94143178827),UVCONST(282429536481),UVCONST(847288609443),UVCONST(2541865828329),UVCONST(7625597484987),UVCONST(22876792454961),UVCONST(68630377364883),UVCONST(205891132094649),UVCONST(617673396283947),UVCONST(1853020188851841),UVCONST(5559060566555523),UVCONST(16677181699666569),UVCONST(50031545098999707),UVCONST(150094635296999121),UVCONST(450283905890997363),UVCONST(1350851717672992089),UVCONST(4052555153018976267),UVCONST(12157665459056928801)};
#endif
#define A078843_MAX_K 49
static const uint32_t _first_3[A078843_MAX_K+1] = {1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319, 37932129, 58110457, 88981343, 136192537, 208364721, 318653143, 487128905, 744398307, 1137129971, 1736461477, 2650785552U, 4045250962U};
/* For all n <= hi, we can get the same results using 2*result with lower k */
static uint32_t reduce_k_for_n(uint32_t k, UV n) {
uint32_t r = 0;
if (k <= 1 || k >= BITS_PER_WORD) return 0;
if (k > MPU_MAX_POW3) /* Larger n would not fit in a UV type */
r = k-MPU_MAX_POW3;
while ((k-r) > 1 && (n>>r) < _pow3[k-r])
r++;
return r;
}
/* Least r s.t. almost_prime_count(k, n) = almost_prime_count(k-r, n >> r) */
static void reduce_prime_count_factor(uint32_t *pk, UV *n) {
uint32_t k = *pk, r = 0;
if (k > MPU_MAX_POW3) /* Larger n would not fit in a UV type */
r = k-MPU_MAX_POW3;
while (k >= r && ((*n)>>r) < _pow3[k-r])
r++;
/* Reduce */
if (r > 0) {
*pk -= r;
*n >>= r;
}
}
/* Least r s.t. nth_almost_prime(k,n) = nth_almost_prime(k-r,n) << r */
static uint32_t reduce_nth_factor(uint32_t k, UV n) {
uint32_t r = 0;
if (k <= 1 || k >= BITS_PER_WORD) return 0;
if (k > A078843_MAX_K) {
if (n >= _first_3[A078843_MAX_K])
return 0;
r = k-A078843_MAX_K+1;
}
while (n < _first_3[k-r])
r++;
return r;
}
/* This could be easily extended to 16 or 32 */
static UV _fast_small_nth_almost_prime(uint32_t k, UV n) {
static const uint8_t semi[8] = {0, 4, 6, 9, 10, 14, 15, 21};
static const uint8_t mult[8] = {0, 8, 12, 18, 20, 27, 28, 30};
MPUassert(n < 8 && k >= 2, "Fast small nth almost prime out of range");
if (k == 2) return semi[n];
return mult[n] * (UVCONST(1) << (k-3));
}
static void _almost_prime_count_bounds(UV *lower, UV *upper, uint32_t k, UV n);
#if 0 /* Not currently used */
/* Somewhere around k=20 it is faster to do:
* return nth_almost_prime(h, 1+almost_prime_count(k,n));
*/
static UV _next_almost_prime(uint32_t k, UV n) {
while (!is_almost_prime(k, ++n))
;
return n;
}
static UV _prev_almost_semiprime(uint32_t k, UV n) {
while (!is_almost_prime(k, --n))
;
return n;
}
#endif
/******************************************************************************/
/* KAP COUNT */
/******************************************************************************/
#define CACHED_PC(cache,n) prime_count_cache_lookup(cache,n)
/* Debatably useful. Slightly faster for small n, the same for larger. */
static UV almost3prime_count(UV n) {
UV sum = 0, cbrtn = prev_prime(rootint(n,3)+1);
void *cache = prime_count_cache_create( (UV)pow(n,0.72) );
SIMPLE_FOR_EACH_PRIME(2, cbrtn) {
UV pdiv = p, lo = p, hi = isqrt(n/pdiv);
UV j = CACHED_PC(cache, lo) - 1; /* IDX(Pi) */
if ((lo <= 2) && (hi >= 2)) sum += CACHED_PC(cache,n/(pdiv*2)) - j++;
if ((lo <= 3) && (hi >= 3)) sum += CACHED_PC(cache,n/(pdiv*3)) - j++;
if ((lo <= 5) && (hi >= 5)) sum += CACHED_PC(cache,n/(pdiv*5)) - j++;
if (lo < 7) lo = 7;
if (lo <= hi) {
unsigned char* segment;
UV seg_base, seg_low, seg_high;
void* ctx = start_segment_primes(lo, hi, &segment);
while (next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
START_DO_FOR_EACH_SIEVE_PRIME( segment, seg_base, seg_low, seg_high )
sum += CACHED_PC(cache,n/(pdiv*p)) - j++;
END_DO_FOR_EACH_SIEVE_PRIME
}
end_segment_primes(ctx);
}
} END_SIMPLE_FOR_EACH_PRIME
prime_count_cache_destroy(cache);
return sum;
}
/* almost_prime_count(k,n) is the main interface, it will call the recursive
* function _cs(), with the terminal function _final_sum(). */
/* for Pi from Pi to isqrt(N/Pi) [pc[n/Pi]-idx(Pi)+1] */
/* semiprime count = _final_sum(n, 1, 2, cache); */
/* 3-almost prime count = sum(Pj < icbrt(n) of _final_sum(n, Pj, Pj, cache); */
static UV _final_sum(UV n, UV pdiv, UV lo, void *cache) {
UV s = 0, hi = isqrt(n/pdiv);
UV j = CACHED_PC(cache, lo) - 1; /* IDX(Pi) */
if (hi-lo < 500) {
SIMPLE_FOR_EACH_PRIME(lo, hi) {
s += CACHED_PC(cache,n/(pdiv*p)) - j++;
} END_SIMPLE_FOR_EACH_PRIME
return s;
}
if ((lo <= 2) && (hi >= 2)) s += CACHED_PC(cache,n/(pdiv*2)) - j++;
if ((lo <= 3) && (hi >= 3)) s += CACHED_PC(cache,n/(pdiv*3)) - j++;
if ((lo <= 5) && (hi >= 5)) s += CACHED_PC(cache,n/(pdiv*5)) - j++;
if (lo < 7) lo = 7;
if (lo <= hi) {
unsigned char* segment;
UV seg_base, seg_low, seg_high;
void* ctx = start_segment_primes(lo, hi, &segment);
while (next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
START_DO_FOR_EACH_SIEVE_PRIME( segment, seg_base, seg_low, seg_high )
s += CACHED_PC(cache,n/(pdiv*p)) - j++;
END_DO_FOR_EACH_SIEVE_PRIME
}
end_segment_primes(ctx);
}
return s;
}
static UV _cs(UV n, UV pdiv, UV lo, uint32_t k, void *cache) {
UV count = 0;
if (k == 2)
return _final_sum(n, pdiv, lo, cache);
SIMPLE_FOR_EACH_PRIME(lo, rootint(n/pdiv,k)) {
if (k == 3) count += _final_sum(n, pdiv*p, p, cache);
else count += _cs(n, pdiv*p, p, k-1, cache);
} END_SIMPLE_FOR_EACH_PRIME
return count;
}
UV almost_prime_count(uint32_t k, UV n)
{
void* cache;
UV count, csize;
if (k == 0) return (n >= 1);
if (k >= BITS_PER_WORD || (n >> k) == 0) return 0;
reduce_prime_count_factor(&k, &n); /* Reduce to lower k,n if possible */
if (n >= max_nth_almost_prime(k))
return max_almost_prime_count(k);
if (k == 0) return n;
if (k == 1) return prime_count(n);
if (k == 2) return semiprime_count(n);
if (k == 3) return almost3prime_count(n);
if (n < 3*(UVCONST(1) << (k-1))) return 1;
if (n < 9*(UVCONST(1) << (k-2))) return 2;
if (n < 10*(UVCONST(1) << (k-2))) return 3;
/* Decide how much we will cache prime counts.
*
* n/(1UL << (k+M)) has 0,1,2,7,15,37,84,187,... lookups for M=-2,-1,0,...
* The number of non-cached counts performed follows OEIS A052130. */
csize = n / (1UL << (k-2));
if (csize < 32) csize = 32;
if (csize > 16UL*1024) csize = n / (1UL << (k+2)); /* 15 */
if (csize > 128UL*1024) csize = n / (1UL << (k+4)); /* 84 */
if (csize > 1UL*1024*1024) csize = n / (1UL << (k+6)); /* 421 */
if (((csize >> 16) >> 16) >= 3) csize >>= 1;
cache = prime_count_cache_create( csize );
count = _cs(n, 1, 2, k, cache);
prime_count_cache_destroy(cache);
return count;
}
UV almost_prime_count_range(uint32_t k, UV lo, UV hi) {
if (k == 0) return (lo <= 1 || hi >= 1);
if (k == 1) return prime_count_range(lo, hi);
if (k == 2) return semiprime_count_range(lo, hi);
/* See semiprime_count. Possibly clever solutions for small ranges. */
if (k >= BITS_PER_WORD || (hi >> k) == 0 || hi < lo) return 0;
return almost_prime_count(k, hi)
- (((lo >> k) == 0) ? 0 : almost_prime_count(k,lo-1));
}
UV almost_prime_count_approx(uint32_t k, UV n) {
UV lo, hi;
if (k == 0) return (n >= 1);
if (k >= BITS_PER_WORD || (n >> k) == 0) return 0;
reduce_prime_count_factor(&k, &n); /* Reduce to lower k,n if possible */
if (k == 1) return prime_count_approx(n);
if (k == 2) return semiprime_count_approx(n);
if (n < 3*(UVCONST(1) << (k-1))) return 1;
if (n < 9*(UVCONST(1) << (k-2))) return 2;
if (n < 10*(UVCONST(1) << (k-2))) return 3;
if (k == 3 && n < 102) {
unsigned char const sm3[19] = {27,28,30,42,44,45,50,52,63,66,68,70,75,76,78,92,98,99};
for (lo=0; lo < 19; lo++)
if (n < sm3[lo])
break;
return 4+lo;
}
_almost_prime_count_bounds(&lo, &hi, k, n);
if (k == 3) { /* Much better fit for k=3. */
double x = n, logx = log(x), loglogx = log(logx);
double a = 1.0, s = 2.0;
UV est;
if (x <= 638) { s = 1.554688; a = 0.865814; }
else if (x <= 1544) { s = 1.050000; a = 0.822256; }
else if (x <= 1927) { s = 0.625000; a = 0.791747; }
else if (x <= 486586) { s = 2.865611; a = 1.004090; }
else if (x <= 1913680) { s = 2.790963; a = 0.999618; }
else if (x <= 22347532) { s = 2.719238; a = 0.995635; }
else if (x <= 2.95e8) { s = 2.584473; a = 0.988802; }
else if (x <= 4.20e9) { s = 2.457108; a = 0.983098; }
else if (x <= 7.07e10) { s = 2.352818; a = 0.978931; }
else if (x <= 1.36e12) { s = 2.269745; a = 0.975953; }
else if (x <= 4.1e13) { s = 2.203002; a = 0.973796; }
else if (x <= 9.2e14) { s = 2.148463; a = 0.972213; }
else { s = 2.119279; a = 0.971438; }
est = 0.5 * a * x * ((loglogx+0.26153)*(loglogx+0.26153)) / (logx+s)+0.5;
if (est < lo) est = lo;
else if (est > hi) est = hi;
return est;
}
#if 0 /* Equation 6 from https://arxiv.org/pdf/2103.09866v3.pdf */
{
const double nu[21] = {
1.0, 2.61497e-1, -5.62153e-1, 3.05978e-1, 2.62973e-2, -6.44501e-2,
3.64064e-2, -4.70865e-3, -4.33984e-4, 1.50850e-3, -1.83548e-4,
1.49365e-4, 4.99174e-5, 1.82657e-5, 1.30241e-5, 5.52779e-6,
2.90194e-6, 1.45075e-6, 7.19861e-7, 3.61606e-7, 1.80517e-7 };
double sum = 0, x = n, logx = log(x), loglogx = log(logx);
uint32_t i, j;
for (j = 0; j < k; j++) {
uint32_t idx = k-1-j;
double v = (idx <= 20) ? nu[idx] : 0.1893475 * powl(2.0, -(double)k);
for (i = 1; i <= j; i++)
v = v * loglogx / i;
sum += v;
}
sum = (x / logx) * sum;
return (UV) (sum+0.5);
}
#endif
/* We should look at (1) better bounds, (2) better weighting here */
/* return lo + (hi-lo)/2; */
/* Consider two variables to control our weight: k and n */
if (k > 11) return lo + (hi-lo) * 0.20;
return lo + (hi-lo) * 0.76;
}
/******************************************************************************/
/* NTH KAP */
/******************************************************************************/
#if 0
/* Asymptotic estimate for the nth k-almost prime */
static double _asymptotic_nth(uint32_t k, UV n) {
uint32_t i; double x, logn, loglogn;
if (k == 0 || n == 0) return 0;
if (n == 1) return UVCONST(1) << k;
logn = log(n);
loglogn = log(logn);
x = n * logn;
for (i = 1; i < k; i++)
x *= (double)i / loglogn;
return x;
}
#endif
static UV apcu(UV mid, UV k) { return almost_prime_count_upper(k, mid); }
static UV apcl(UV mid, UV k) { return almost_prime_count_lower(k, mid); }
static UV apca(UV mid, UV k) { return almost_prime_count_approx(k, mid); }
static UV apce(UV mid, UV k) { return almost_prime_count(k, mid); }
UV nth_almost_prime_upper(uint32_t k, UV n) {
UV r, max, lo;
if (n == 0) return 0;
if (k == 0) return (n == 1) ? 1 : 0;
if (k == 1) return nth_prime_upper(n);
if (n < 8) return _fast_small_nth_almost_prime(k, n);
max = max_almost_prime_count(k);
if (n > max) return 0;
r = reduce_nth_factor(k,n);
if (r > 0) return nth_almost_prime_upper(k-r, n) << r;
/* We start out with the literal min and max because we have NO idea. */
lo = 5 * (UVCONST(1) << k); /* For k >= 1 and n >= 8 */
return inverse_interpolate_k(lo, 0, n, k, &apcl, 0);
}
UV nth_almost_prime_lower(uint32_t k, UV n) {
UV r, max, lo;
if (n == 0) return 0;
if (k == 0) return (n == 1) ? 1 : 0;
if (k == 1) return nth_prime_lower(n);
if (n < 8) return _fast_small_nth_almost_prime(k, n);
max = max_almost_prime_count(k);
if (n > max) return 0;
r = reduce_nth_factor(k,n);
if (r > 0) return nth_almost_prime_lower(k-r, n) << r;
/* We start out with the literal min and max because we have NO idea. */
/* \_/ note 3 instead of 5! TODO: apcu is not tight enough, so reduce */
lo = 3 * (UVCONST(1) << k); /* For k >= 1 and n >= 8 */
return inverse_interpolate_k(lo, 0, n, k, &apcu, 0);
}
UV nth_almost_prime_approx(uint32_t k, UV n) {
UV max, lo;
if (n == 0) return 0;
if (k == 0) return (n == 1) ? 1 : 0;
if (k == 1) return nth_prime_approx(n);
if (k == 2) return nth_semiprime_approx(n);
max = max_almost_prime_count(k);
if (n > max) return 0;
/* We could reduce but really no reason to do it */
if (n < 8) return _fast_small_nth_almost_prime(k,n);
lo = nth_almost_prime_lower(k,n);
return inverse_interpolate_k(lo, 0, n, k, &apca, 0);
}
static UV _cb_nth3(UV n) { return nth_almost_prime_approx(3,n); }
static UV _cb_cnt3(UV n) { return almost_prime_count(3,n); }
static int _cb_is3(UV n) { return is_almost_prime(3,n); }
static UV _cb_nth4(UV n) { return nth_almost_prime_approx(4,n); }
static UV _cb_cnt4(UV n) { return almost_prime_count(4,n); }
static int _cb_is4(UV n) { return is_almost_prime(4,n); }
UV nth_almost_prime(uint32_t k, UV n) {
UV r, lo, hi;
if (n == 0) return 0;
if (k == 0) return (n == 1) ? 1 : 0;
if (k == 1) return nth_prime(n);
if (k == 2) return nth_semiprime(n);
if (n > max_almost_prime_count(k)) return 0;
/* For k >= 3 and small n we can answer this quickly. */
if (n < 8) return _fast_small_nth_almost_prime(k,n);
r = reduce_nth_factor(k,n);
if (r > 0) return nth_almost_prime(k-r,n) << r;
/* NOTE: given n a 64-bit integer, k always <= 40 after reduction */
/* Using the approximation to narrow in is *much* more efficient. But
* there is no good way to make it generic without closures (GCC extension)
* or statics (not thread-safe). */
if (k == 3)
return interpolate_with_approx(n, 0, 20000, &_cb_nth3, &_cb_cnt3, &_cb_is3);
if (k == 4)
return interpolate_with_approx(n, 0, 20000, &_cb_nth4, &_cb_cnt4, &_cb_is4);
lo = nth_almost_prime_lower(k,n);
hi = nth_almost_prime_upper(k,n);
hi = inverse_interpolate_k(lo, hi, n, k, &apce, 60000);
while (!is_almost_prime(k,hi))
hi--;
return hi;
}
/******************************************************************************/
/* Bounds */
/******************************************************************************/
/* Bayless et al. (2018) and Kinlaw (2019) are main references.
*
* https://www.researchgate.net/publication/329788487_Sums_over_primitive_sets_with_a_fixed_number_of_prime_factors
* http://math.colgate.edu/~integers/t22/t22.pdf
* https://arxiv.org/pdf/2103.09866v3.pdf
*
* Note that they use Pi_k(x) to mean square-free numbers, and
* Tau_k(x) to mean the general count like we use.
* They also have results for k = 2,3,4 only.
* Also see https://archimede.mat.ulaval.ca/MAINE-QUEBEC/19/Kinlaw19.pdf.
*
* We split into three ranges:
* 1 - 2^20 complete computations
* 2^20 - 2^32 complete computations
* 2^32 - 2^64 correct upper for k=2,3,4. correct lower for k=2.
* empirical for other k.
*
*/
static const double _upper_20[13] = {0,0, 1.006,0.7385,0.6830,0.5940,0.3596,0.2227,0.1439, 0.09785,0.07016,0.05303,0.04202};
static const double _upper_32[21] = {0,0, 1.013,0.8094,0.7485,
/* 5-12 */ 0.6467,0.3984,0.2464,0.1572,0.1049,0.07364,0.05452,0.04266,
/* 13-20 */ 0.03542,0.03082,0.02798,0.02642,0.02585,0.02615,0.02808,0.03054};
static const double _upper_64[41] = {0,0, 1.028, 1.028, 1.3043,/* <--corrrect */
/* 5-12 */
0.72208, 0.46609, 0.29340,0.18571,0.12063,0.0815,0.0575,0.0427,
/* 13-20 */
0.03490, 0.03007, 0.02710, 0.02554, 0.02504, 0.02554, 0.02699, 0.02954,
/* 21-28 */
0.03294, 0.03779, 0.04453, 0.05393, 0.06703, 0.08543, 0.1117, 0.1494,
/* 29-31 */
0.205,0.287,0.410,
/* 32-40 */
0.60,0.90,1.36,2.12,3.35,5.38,8.83,14.75,25.07,
};
static const double _lower_20[13] = {0,0, 0.8197, 0.8418, 0.5242,
/* 5-12 */ 0.5154,0.3053,0.1901,0.1253,0.0892,0.06551,0.05082,0.04101};
static const double _lower_32[21] = {0,0, 1.004, 0.7383, 0.6828,
/* 5-12 */ 0.5939,0.3594,0.2222,0.1438,0.09754,0.06981,0.05245,0.04151,
/* 13-20 */ 0.03461,0.03006,0.02709,0.02553,0.02502,0.02552,0.02697,0.02945 };
static const double _lower_64[41] = {0,0, 1.011, 0.8093, 0.7484,
/* 5-12 */
0.6465,0.3982,0.2463,0.1571,0.1048,0.07363,0.0545,0.0422,
/* 13-20 */
0.0331,0.0270,0.0232,0.0208,0.0194,0.0190,0.0193,0.0203,
/* 21-28 */
0.0222,0.0252,0.0295,0.0356,0.0444,0.0570,0.0753,0.102,
/* 29-31 */
0.14,0.20,0.297,
/* 32-40 */
0.44,0.68,1.07,1.71,2.8,4.7,8.0,13.89,23.98,
};
/*
k,count n <= 2^64-1
1,425656284035217743
2,1701748900850019777 10 hours
3,3167597434038354478 320 hours
4,3787884015050788482 322 hours
5,3378907169603895030 294 hours
6,2466706950238087748 209 hours
7,1571012171387856192 123 hours
8,913164427599983727 82 hours
9,499840874923678341 42 hours
10,263157990621533964 20 hours
11,135128109904869290 12 hours
12,68283616225825256 7 hours
13,34151861008771016 4 hours
14,16967424859951587 2 hours
15,8393048221327186
16,4139595949113890
17,2037655246635364
18,1001591348315641
19,491808604962296
20,241293656953012
21,118304122014405
22,57968649799947
23,28388662714236
24,13895161400556
25,6797526392535
26,3323560145881
27,1624109166018
28,793189260998
29,387148515886
30,188844769357
31,92054377509
32,44841620426
33,21827124353
34,10616326552
35,5159281045
36,2505087309
37,1215204383
38,588891145
39,285076316
40,137840686
*/
static void _almost_prime_count_bounds(UV *lower, UV *upper, uint32_t k, UV n) {
double x, logx, loglogx, logplus, multl, multu, boundl, boundu;
UV max;
uint32_t i;
if (k >= BITS_PER_WORD || (n >> k) == 0) { *lower = *upper = 0; return; }
reduce_prime_count_factor(&k, &n); /* Reduce to lower k,n if possible */
if (k == 0) { *lower = *upper = (n >= 1); return; }
if (k == 1) { *lower = prime_count_lower(n); *upper = prime_count_upper(n); return; }
if (n < 3*(UVCONST(1) << (k-1))) { *lower = *upper = 1; return; }
if (n < 9*(UVCONST(1) << (k-2))) { *lower = *upper = 2; return; }
if (n < 10*(UVCONST(1) << (k-2))) { *lower = *upper = 3; return; }
max = max_almost_prime_count(k);
if (n >= max_nth_almost_prime(k))
{ *lower = *upper = max; return; }
x = (double) n;
logx = log(x);
loglogx = log(logx);
logplus = loglogx + 0.26153;
/* Select the appropriate table for n's range.
* 20/32/64-bit n will always reduce k to these limits. */
if (n <= 1048575U) {
MPUassert(k <= 12, "almost prime count: 20-bit n doesn't exceed k 12");
multu = _upper_20[k]; multl = _lower_20[k];
} else if (n <= 4294967295U) {
MPUassert(k <= 20, "almost prime count: 32-bit n doesn't exceed k 20");
multu = _upper_32[k]; multl = _lower_32[k];
} else {
MPUassert(k <= 40, "almost prime count: after reduction, k <= 40");
multu = _upper_64[k]; multl = _lower_64[k];
}
if (k == 2) {
boundl = boundu = x * (loglogx + 0.261536) / logx;
if (x >= 1e12) {
boundl = x*(loglogx+0.1769)/logx * (1+0.4232/logx);
multl = 1;
}
} else if (k == 3) {
boundu = x * (logplus*logplus + 1.055852) / (2*logx);
/* Kinlaw (2019) Theorem 1 (with 1.000) */
boundl = x * loglogx * loglogx / (2*logx);
multl = (x <= 500194) ? 0.8418
: (x <= 3184393786U) ? 1.0000
: 1.04;
/* Bayless (2018) Theorem 5.3 proves that multu=1.028 is a correct bound
* for all x >= 10^12. However it is not a tight bound for the range
* 2^32 to 2^64. We tighten it a lot for the reduced range.
*/
if (n > 4294967295U) multu = 0.8711;
} else if (k == 4) {
/* Bayless Theorem 5.4 part 1 (with multu = 1.3043) */
boundl = boundu = x * logplus*logplus*logplus / (6*logx);
/* Bayless Theorem 5.4 part 2 */
if (x > 1e12) {
boundu += 0.511977 * x * (log(log(x/4)) + 0.261536) / logx;
multu = 1.028;
}
/* As with k=3, adjust to tighten in the finite range. */
if (n > 4294967295U) multu = 0.780;
if (x > 1e12) multu = 0.6921;
} else {
/* Completely empirical and by no means optimal.
* It is easy and seems fairly reasonable through k=20 or so.
*
* For high k, this follows the lower bound well but upper grows too fast.
*/
boundl = x / logx;
logplus = loglogx + (log(k)*log(log(k))-0.504377); /* k=5 => 0.26153 */
for (i = 1; i < k; i++)
boundl *= logplus / (double)i;
boundu = boundl;
}
#if 0
printf(" lower: %lf * %lf = %lf\n", boundl, multl, boundl*multl);
printf(" upper: %lf * %lf = %lf\n", boundu, multu, boundu*multu);
printf(" max: %lu\n", max);
#endif
boundl *= multl;
boundu *= multu;
*lower = (boundl >= UV_MAX || (max > 0 && boundl > max)) ? max : (UV)boundl;
*upper = (boundu >= UV_MAX || (max > 0 && boundu > max)) ? max : (UV)(boundu+1.0);
}
UV almost_prime_count_upper(uint32_t k, UV n) {
UV l, u;
if (k == 2 && n < 256) return semiprime_count(n);
_almost_prime_count_bounds(&l, &u, k, n);
return u;
}
UV almost_prime_count_lower(uint32_t k, UV n) {
UV l, u;
if (k == 2 && n < 256) return semiprime_count(n);
_almost_prime_count_bounds(&l, &u, k, n);
return l;
}
UV max_nth_almost_prime(uint32_t k) {
#if BITS_PER_WORD == 32
static const UV offset[32] = {0,4,1,9,5,0,7,47,31,3,15,511,1263,5119,1023,255,23295,2559,4095,126975,16383,262143,2359295,2097151,5767167,1048575,33554431,16777215,100663295,67108863,268435455,1073741823};
#else
static const UV offset[64] = {0,58,14,2,4,
/* 5-12 */ 3,17,0,1,195,51,127,63,
/* 13-22 */ 767,1535,511,255,15,8191,1023,83967,16383,111615,
/* 23-32 */ 557055,2097151,524287,65535,1048575,6553599,33554431,4194303,671088639,16777215,
/* 33-63 */ UVCONST(536870911),UVCONST(2684354559),UVCONST(2147483647),
UVCONST(25769803775),UVCONST(4294967295),UVCONST(268435455),
UVCONST(206158430207),UVCONST(137438953471),UVCONST(17179869183),
UVCONST(68719476735),UVCONST(2199023255551),UVCONST(5428838662143),
UVCONST(21990232555519),UVCONST(4398046511103),UVCONST(1099511627775),
UVCONST(100055558127615),UVCONST(10995116277759),UVCONST(17592186044415),
UVCONST(545357767376895),UVCONST(70368744177663),UVCONST(1125899906842623),
UVCONST(10133099161583615),UVCONST(9007199254740991),
UVCONST(24769797950537727),UVCONST(4503599627370495),
UVCONST(144115188075855871),UVCONST(72057594037927935),
UVCONST(432345564227567615),UVCONST(288230376151711743),
UVCONST(1152921504606846975),UVCONST(4611686018427387903)
};
#endif
if (k >= BITS_PER_WORD) return 0;
return UV_MAX - offset[k];
}
UV max_almost_prime_count(uint32_t k) {
#if BITS_PER_WORD == 32
static const UV max[32] = {1,203280221,658662065,967785236,916899721,665533848,410630859,229679168,121092503,61600699,30653019,15043269,7315315,3535071,1700690,814699,389357,185245,87964,41599,19611,9184,4283,2001,914,421,187,84,37,15,7,2};
#else
static const UV max[64] = {1,
UVCONST( 425656284035217743), /* max prime count */
UVCONST(1701748900850019777), /* max semiprime count */
UVCONST(3167597434038354478), /* max 3-almost-prime count */
UVCONST(3787884015050788482), /* max 4-almost-prime count */
/* 5-12 */ UVCONST(3378907169603895030),UVCONST(2466706950238087748),UVCONST(1571012171387856192),UVCONST(913164427599983727),UVCONST(499840874923678341),UVCONST(263157990621533964),UVCONST(135128109904869290),UVCONST(68283616225825256),
/* 13-22 */ UVCONST(34151861008771016),UVCONST(16967424859951587),UVCONST(8393048221327186),UVCONST(4139595949113890),UVCONST(2037655246635364),UVCONST(1001591348315641),UVCONST(491808604962296),UVCONST(241293656953012),UVCONST(118304122014405),UVCONST(57968649799947),
/* 23-32 */ UVCONST(28388662714236),UVCONST(13895161400556),UVCONST(6797526392535),UVCONST(3323560145881),UVCONST(1624109166018),UVCONST(793189260998),UVCONST(387148515886),UVCONST(188844769357),UVCONST(92054377509),UVCONST(44841620426),
/* 33-63 */ UVCONST(21827124353),UVCONST(10616326552),UVCONST(5159281045),UVCONST(2505087309),1215204383,588891145,285076316,137840686,66567488,32103728,15460810,7433670,3567978,1709640,817053,389954,185387,87993,41604,19611,9184,4283,2001,914,421,187,84,37,15,7,2
};
#endif
if (k >= BITS_PER_WORD) return 0;
/* if (max[k] == 0) return UV_MAX; All filled in so no need */
return max[k];
}
/******************************************************************************/
/* Construction */
/******************************************************************************/
/* There are a few options for constructing KAPs without sieving/factoring.
*
* 1) we can make an iterator that recursively constructs them using
* a prime list and a k-1 iterator. This is a generalization of
* Dijkstra's Hamming number algorithm.
*
* 2) Given a range [lo,hi], We can ask for all k-1 kaps less than hi/2,
* then multiply through by primes to see which fall in our range.
*
* Each of these (and sieving) is limited in some ways. For example, #1
* can output 500-almost-primes quite rapidly which some other methods have
* trouble with, even with all the calculation in Perl. But it rapidly
* slows down with increasing n.
*
* I suspect there are far more efficient methods.
*/
static void _tidy_list(UV **list, UV *Lsize, UV *count, int minimal) {
UV *L = *list;
if (*count > 1) {
UV i, j;
sort_uv_array(L, *count);
for (j = 0, i = 1; i < *count; i++) {
if (L[i] != L[j])
L[++j] = L[i];
}
*count = j+1;
}
if (minimal) {
*Lsize = *count;
Renew(*list, *Lsize, UV);
} else if (*count * 1.5 > *Lsize) {
*Lsize = *count * 2 + 100;
Renew(*list, *Lsize, UV);
}
}
UV range_construct_almost_prime(UV** list, uint32_t k, UV lo, UV hi) {
UV *L, minkap1, lastprime, count = 0;
if (k == 0 || k >= BITS_PER_WORD) { *list = 0; return 0; }
if ((lo >> k) == 0) lo = UVCONST(1) << k;
if (hi > max_nth_almost_prime(k)) hi = max_nth_almost_prime(k);
if (lo > hi) { *list = 0; return 0; }
if (k == 1) return range_prime_sieve(list, lo, hi);
if (k == 2) return range_semiprime_sieve(list, lo, hi);
/* if (k <= 5) return range_almost_prime_sieve(list, k, lo, hi); */
minkap1 = 1 << (k-1);
lastprime = hi / minkap1; /* lastprime = prev_prime(lastprime+1); */
{
UV i, Lsize;
UV *lkap1, nkap1=range_construct_almost_prime(&lkap1, k-1, minkap1, hi>>1);
/* Now multiply through exhaustively. */
Lsize = nkap1*4 + 100;
New(0, L, Lsize, UV);
START_DO_FOR_EACH_PRIME(2, lastprime) {
for (i = 0; i < nkap1; i++) {
UV prod = p * lkap1[i];
if (prod < lo) continue;
if (prod > hi) break;
if (count >= Lsize)
_tidy_list(&L, &Lsize, &count, 0);
L[count++] = prod;
}
} END_DO_FOR_EACH_PRIME
_tidy_list(&L, &Lsize, &count, 1);
Safefree(lkap1);
}
*list = L;
return count;
}
UV range_almost_prime_sieve(UV** list, uint32_t k, UV slo, UV shi)
{
UV *S, Ssize, i, j, count;
const UV thresh_pred = 40;
if (k == 0 || k >= BITS_PER_WORD) { *list = 0; return 0; }
if ((slo >> k) == 0) slo = UVCONST(1) << k;
if (shi > max_nth_almost_prime(k)) shi = max_nth_almost_prime(k);
if (slo > shi) { *list = 0; return 0; }
#if 1
if (shi-slo+1 < thresh_pred) {
Ssize = 3 + (thresh_pred >> 1);
New(0, S, Ssize, UV);
for (i = 0, j = 0; i < shi-slo+1; i++)
if (is_almost_prime(k, slo+i))
S[j++] = slo+i;
*list = S;
return j;
}
#endif
if (k == 1) return range_prime_sieve(list, slo, shi);
if (k == 2) return range_semiprime_sieve(list, slo, shi);
/* See if we can reduce k.
* If for all possible kap from 1 to shi, ap(k,n) = 2*ap(k-1,n), then
* sieve for k-1 from lo/2 to hi/2+1.
* For large k this can continue even further so we might reduce a lot.
*/
{
uint32_t r = reduce_k_for_n(k, shi);
if (r > 0) {
UV lo = (slo >> r) + (((slo >> r) << r) < slo);
UV hi = shi >> r;
count = range_almost_prime_sieve(&S, k-r, lo, hi);
for (i = 0; i < count; i++)
S[i] <<= r;
*list = S;
return count;
}
}
Ssize = (almost_prime_count_approx(k,shi) - almost_prime_count_approx(k,slo) + 1) * 1.2 + 100;
if (Ssize > 10000000UL) Ssize = 10000000UL;
New(0, S, Ssize, UV);
/* Do a range nfactor sieve in small windows, with one optimization.
*
* We know that we are looking for numbers with k factors, hence after
* looking for small factors we could get a remainder R as large as:
* 2 x 2 x ... x R where R could be prime or semiprime. Hence we can
* reduce the sieve limit somewhat. Effectively we are sieving to the
* maximum possible *second largest* factor for a k-almost-prime,
* allowing us to correctly decide whether R is prime or semiprime
* (if it has >= k factors).
*
* This isn't a big deal for small k, but it's a big impact for high k.
*
* I still think there should be a better way to do this for high k.
* Is there any way to do this just sieving to rootint(hi,k+1)?
* Given hi=10^6:
* k=3 => 97^3, 2x701^2, 2x2x249989
* k=4 => 31^4, 2x79^3, 2x2x499^2, 2x2x2x724991
*/
{
unsigned char* nf;
UV const segsize = 65536*4;
UV *N, lo, hi, range;
UV kdiv = (k < 3) ? UVCONST(1) : (UVCONST(1) << (k-2));
New(0, nf, segsize+1, unsigned char);
New(0, N, segsize+1, UV);
prime_precalc(isqrt(shi/kdiv));
count = 0;
for (lo = slo; lo <= shi && lo >= slo; lo = hi+1) {
hi = lo+segsize-1;
if (hi > shi || hi < lo) hi = shi;
range = hi - lo + 1;
memset(nf, 0, range);
for (i = lo; i <= hi; i++) {
if (!(i&1) && i >= 2) {
unsigned char nz = ctz(i);
nf[i-lo] = nz;
N[i-lo] = UVCONST(1) << nz;
} else
N[i-lo] = 1;
}
START_DO_FOR_EACH_PRIME(3, isqrt(hi/kdiv)) {
UV pk, maxpk = UV_MAX/p; \
for (i = P_GT_LO_0(p,p,lo); i < range; i += p)
{ N[i] *= p; nf[i]++; }
for (pk = p*p; pk <= hi; pk *= p) {
for (i = P_GT_LO_0(pk,pk,lo); i < range; i += pk)
{ N[i] *= p; nf[i]++; }
if (pk >= maxpk) break; /* Overflow protection */
}
} END_DO_FOR_EACH_PRIME
for (i = 0; i < range; i++) {
if (N[i] < (lo+i))
nf[i]++;
if (nf[i] == k) {
if (count >= Ssize)
Renew(S, Ssize += 10000, UV);
S[count++] = i+lo;
}
}
}
Safefree(N);
Safefree(nf);
}
*list = S;
return count;
}
/* Algorithm from Trizen, May 2022 */
static void _genkap(UV lo, UV hi, uint32_t k, UV m, UV begp, UV **List, UV *Lpos, UV *Lsize) {
if (k == 1) {
UV pos = *Lpos, size = *Lsize, *L = *List;
UV start = lo/m + (lo % m != 0), endp = hi/m;
if (start > begp) begp = start;
if (endp < 10000000U) {
START_DO_FOR_EACH_PRIME(begp, endp) {
if (L != 0) {
if (pos >= size) Renew(L, size += 100000, UV);
L[pos] = m*p;
}
pos++;
} END_DO_FOR_EACH_PRIME
} else {
UV i, count, *list;
count = range_prime_sieve(&list, begp, endp);
if (L == 0) {
pos += count;
} else {
if ((pos + count - 1) >= size) Renew(L, size += (count + 100000), UV);
for (i = 0; i < count; i++)
L[pos++] = m * list[i];
}
Safefree(list);
}
*Lpos = pos;
*Lsize = size;
*List = L;
} else {
UV p, s;
for (s = rootint(hi/m, k), p = begp; p <= s; p = next_prime(p)) {
UV t = m * p;
if ((lo/t + (lo % t != 0)) <= (hi/t))
_genkap(lo, hi, k-1, t, p, List, Lpos, Lsize);
}
}
}
UV generate_almost_primes(UV** list, uint32_t k, UV lo, UV hi) {
UV *L, Lpos = 0, Lsize, countest;
if (k == 0 || k >= BITS_PER_WORD) { *list = 0; return 0; }
if ((lo >> k) == 0) lo = UVCONST(1) << k;
if (hi > max_nth_almost_prime(k)) hi = max_nth_almost_prime(k);
if (lo > hi) { *list = 0; return 0; }
/* For these small k values, these are typically faster */
if (k == 1) return range_prime_sieve(list, lo, hi);
if (k == 2) return range_semiprime_sieve(list, lo, hi);
/* Large base with small range: better to sieve */
if ( (k >= 3 && hi >= 1e12 && (hi-lo) <= 5e6) ||
(k >= 3 && hi >= 1e13 && (hi-lo) <= 2e8) ||
(k >= 3 && hi >= 1e14 && (hi-lo) <= 4e8) )
return range_almost_prime_sieve(list, k, lo, hi);
/* Optional: we could try reduce_k_for_n() here. */
prime_precalc(10000000U);
countest = almost_prime_count_approx(k,hi) - almost_prime_count_approx(k,lo-1);
Lsize = (countest > 10000000U) ? 10000000U : countest+1000;
New(0, L, Lsize, UV);
_genkap(lo, hi, k, 1, 2, &L, &Lpos, &Lsize);
sort_uv_array(L, Lpos);
*list = L;
return Lpos;
}
/******************************************************************************/
/* CHEN PRIMES */
/******************************************************************************/
/* consider Chen(h,k) where p prime and bigomega(p+h) <= k */
#if BITS_PER_WORD == 64
#define MAX_CHEN_PRIME UVCONST(18446744073709551437)
#else
#define MAX_CHEN_PRIME UVCONST(4294967291)
#endif
int is_chen_prime(UV n) {
if (n < 2 || n > MAX_CHEN_PRIME) return 0;
return (is_prime(n) && (is_prime(n+2) || is_semiprime(n+2)));
}
UV next_chen_prime(UV n) {
for ( n = next_prime(n); n != 0 && n < MAX_CHEN_PRIME; n = next_prime(n+2) )
if (is_prime(n+2) || is_semiprime(n+2))
return n;
return 0;
}