forked from denisyarats/exorl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_encoder.py
61 lines (43 loc) · 1.64 KB
/
train_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import warnings
warnings.filterwarnings('ignore', category=DeprecationWarning)
import logging
import os
import pprint
import hydra
import torch
from pathlib import Path
from libraries.latentsafesets.rl_trainers import VAETrainer
import libraries.latentsafesets.utils as utils
from utils import set_seed_everywhere
from libraries.latentsafesets.utils import LossPlotter, EncoderDataLoader
from libraries.latentsafesets.utils import encoder_data_loader
from libraries.latentsafesets.utils.arg_parser import parse_args
from utils.logger import Logger
log = logging.getLogger("main")
class Workspace:
def __init__(self, cfg):
self.work_dir = Path.cwd()
if cfg.frame_stack == 1:
cfg.d_obs = (3, 64, 64)
else:
cfg.d_obs = (cfg.frame_stack, 3, 64, 64)
self.cfg = cfg
set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.logger = Logger(self.work_dir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
self.encoder_data_loader = EncoderDataLoader(cfg.env, cfg.frame_stack)
modules = utils.make_modules(cfg)
self.encoder = modules['enc']
self.loss_plotter = LossPlotter(self.work_dir)
def train(self):
trainer = VAETrainer(self.cfg, self.encoder, self.loss_plotter)
trainer.initial_train(self.encoder_data_loader, self.work_dir, force_train=True)
@hydra.main(config_path='configs/.', config_name='encoder')
def main(cfg):
from train_encoder import Workspace as W
workspace = W(cfg)
workspace.train()
if __name__ == '__main__':
main()