-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpre_comp_emb.py
46 lines (35 loc) · 1.59 KB
/
pre_comp_emb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from dpsda.feature_extractor import extract_features
from dpsda.logging import log_embeddings
import os
from dpsda.data_loader import load_data
import argparse
from apis.utils import set_seed
all_feature_extractor = ["sentence-t5-xl", "sentence-t5-large", "sentence-t5-base",
"all-MiniLM-L6-v2", "all-mpnet-base-v2",
"paraphrase-MiniLM-L6-v2",
"distilbert-base-nli-stsb-mean-tokens", "roberta-large-nli-stsb-mean-tokens"]
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str,
default="stsb-roberta-base-v2", required=False)
parser.add_argument("--dataset", type=str, default="yelp",
choices=["yelp", "pubmed", "openreview"],
required=False)
args = parser.parse_args()
set_seed(seed=0, n_gpu=1)
feature_extractor = args.model_name_or_path
data_files = {'pubmed': 'data/pubmed/train.csv',
'yelp': 'data/yelp/train.csv',
'openreview': 'data/openreview/iclr23_reviews_train.csv'
}
all_private_samples, all_private_labels, private_labels_counter, private_labels_indexer = load_data(
dataset=args.dataset,
data_file=data_files[args.dataset],
num_samples=-1)
all_private_features = extract_features(
data=all_private_samples,
batch_size=10000,
model_name=feature_extractor,
)
log_embeddings(all_private_features, all_private_labels[:len(all_private_features)],
os.path.join('result', 'embeddings', feature_extractor), fname=f'{args.dataset}_train_all')
print("finished!")