-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
502 lines (399 loc) · 18.8 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import numpy as np
import vrep
import cv2
import time
import sys
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
from PIL import Image
import torch.nn as nn
from skimage.measure import compare_ssim as ssim
#import sim
from tensorboardX import SummaryWriter
import torchvision
## globals
SRV_PORT = 19999
CAMERA = "Vision_sensor"
IMAGE_PLANE = "Plane0"
DIR_LIGHT0="light"
N_BASE_IMGS=50
CAPTURED_IMGS_PATH="./capture/"
testTarget1="testTarget1"
objects_names = [CAMERA, IMAGE_PLANE, testTarget1]
label_root = 'lable.txt'
image_root = 'imgs_name.txt'
batchsize = 16
torch.set_printoptions(precision=6)
writer = SummaryWriter(log_dir='./run/')
#root =os.getcwd()+ '/capture/'#数据集的地址
#-----------ready the dataset--------------
def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
###----construct function with defualt parameters
def __init__(self,image_root,label_root,transform=None,target_transform=None,loader=default_loader):
super(MyDataset,self).__init__()
all_img_name= []
all_label = []
fi = open(image_root, 'r')
for name_img_line in fi:
name_img_line = name_img_line.strip('\n')
name_img_line = name_img_line.rstrip('\n')
all_img_name.append(name_img_line)
fl = open(label_root, 'r')
for label_line in fl:
label_line = label_line.strip('\n')
label_line = label_line.rstrip('\n')
label_line = label_line.split()
all_label.append(label_line)
self.all_img_name=all_img_name
self.all_label = all_label
self.transform = transform
self.target_transform = target_transform
#self.label = []
#self.data = []
self.loader = loader
def __getitem__(self, index):
label = self.all_label[index]
#print('index is:',index)
label = np.array([i for i in label], dtype=np.float16)
label = torch.Tensor(label)
#label = transforms.Normalize([],[])
#print('label is :',label)
fn =self.all_img_name[index]
image = self.loader(fn)
if self.transform is not None:
image = self.transform(image)
#if self.target_transform is not None:
#label = self.target_transform(label)
#label = Variable(label)
#label = array.array(label)
#label=torch.Tensor(label)
return image,label
def __len__(self):
return len(self.all_img_name)
train_data = MyDataset(image_root=image_root, label_root=label_root, transform=transforms.Compose([
transforms.Resize(size=256,interpolation=2),
transforms.ToTensor(),
#transforms.Normalize(mean =(0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))
transforms.RandomErasing(p=1,scale=(0.01,0.05),ratio=(0.2,0.6),value=(100,100,100))
]))
train_loader = DataLoader(dataset=train_data, batch_size=batchsize, shuffle=True, num_workers=8,pin_memory=True)
'''
label_validation_root = 'lable_validation.txt'
image_validation_root = 'imgs_name_validation.txt'
test_data = MyDataset(image_root=image_validation_root, label_root=label_validation_root, transform=transforms.Compose([
transforms.Resize(size=256,interpolation=2),
transforms.ToTensor(),
#transforms.Normalize(mean =(0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))
]))
test_loader = DataLoader(dataset=test_data, batch_size=batchsize, shuffle=False, num_workers=8,pin_memory=True)
'''
def connect(port, message):
# connect to server
vrep.simxFinish(-1) # just in case, close all opened connections
clientID = vrep.simxStart('127.0.0.1', 19999, True, True, 5000, 5) # start a connection
if clientID != -1:
print("Connected to remote API server")
print(message)
else:
print("Not connected to remote API server")
sys.exit("Could not connect")
return clientID
def getObjectsHandles(clientID, objects):
handles = {}
for obj_idx in range(len(objects)):
err_code, handles[objects[obj_idx]] = vrep.simxGetObjectHandle(clientID, objects[obj_idx], vrep.simx_opmode_blocking)
print('err_code is :',err_code)
if err_code:
print("Failed to get a handle for object: {}, got error code: {}".format( objects[obj_idx], err_code))
break;
return handles
def setCameraRandomPose(clientID, obj, newPose):
errPos= vrep.simxSetObjectPosition(clientID, obj, -1, newPose[0,:], vrep.simx_opmode_oneshot_wait)
errOrient= vrep.simxSetObjectOrientation(clientID, obj, -1, newPose[1,:], vrep.simx_opmode_oneshot_wait)
if errPos :
print("Failed to set position for object: {}, got error code: {}".format(obj, errPos))
elif errOrient:
print("Failed to set orientation for object: {}, got error code: {}".format(obj, errOrient))
else:pass
def renderSensorImage(clientID, camera,sleep_time):
#errRender, resolution, image = vrep.simxGetVisionSensorImage(clientID, camera, 0, vrep.simx_opmode_streaming)
errRender, resolution, image = vrep.simxGetVisionSensorImage(clientID, camera, 0, vrep.simx_opmode_blocking)
#print('errRender1:', errRender)
time.sleep(sleep_time)
#errRender, resolution, image = vrep.simxGetVisionSensorImage(clientID, camera, 0, vrep.simx_opmode_buffer)
errRender, resolution, image = vrep.simxGetVisionSensorImage(clientID, camera, 0, vrep.simx_opmode_blocking)
#print('errRender:',errRender)
#print('vrep.simx_return_ok is :',vrep.simx_return_ok)
if errRender == vrep.simx_return_ok:
img = np.array(image, dtype=np.uint8)
img.resize([resolution[0], resolution[1], 3])
img = cv2.flip(img, 0)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = cv2.resize(img,(256,256))
return img
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('torch.cuda.is_available() is:', torch.cuda.is_available())
###-----------model define-------resnet-152
model = torchvision.models.resnet152(pretrained=False)
model.load_state_dict(torch.load('resnet152-b121ed2d.pth'))
print(model)
fc_inputs = model.fc.in_features
model.fc = nn.Sequential(
nn.Linear(fc_inputs, 2048),
nn.LeakyReLU(),
nn.Linear(2048,1024),
nn.LeakyReLU(),
nn.Linear(1024,512),
nn.LeakyReLU(),
nn.Linear(512, 6)
)
model = model.to(device)
#model = torch.load('model_152.kpl')
#model = model.to(device)
print('model is:',model)
def image_switch(images):
np_images = images.cuda().data.cpu().numpy()
np_images *= 255
np_images = np_images.astype(np.uint8)#3x512x512
# cv2.namedWindow("image", cv2.WINDOW_AUTOSIZE )
np_images1 = np.swapaxes(np_images, 0, 1) # 512x3x512
np_images2 = np.swapaxes(np_images1, 1, 2) #512x512x3
#np_images2 = np.swapaxes(np_images2, 0, 1)
b, g, r = cv2.split(np_images2)
img_switch = cv2.merge([r, g, b])
return img_switch
def img_get(pose,i):
newPose = pose.cuda().data.cpu().numpy().reshape(2, 3)
#print('newpose is:', object_handles[testTarget1])
setCameraRandomPose(clientID, object_handles[testTarget1], newPose)
if i == 0:
sleep_time = 0.05
else:
sleep_time = 0.0
#print('sleep time is:',sleep_time)
render_image = renderSensorImage(clientID, object_handles[CAMERA], sleep_time)
return render_image
from math import exp
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
return gauss/gauss.sum()
def create_window(window_size, channel=1):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def ssim_pytorch(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=True):
#device = img1.device
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
levels = weights.size()[0]
ssims = []
mcs = []
for _ in range(levels):
sim, cs = ssim_pytorch(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
#print('nan sim', torch.isnan(sim))
#print('nan cs', torch.isnan(cs))
# Relu normalize (not compliant with original definition)
if normalize == "relu":
ssims.append(torch.relu(sim))
mcs.append(torch.relu(cs))
else:
ssims.append(sim)
mcs.append(cs)
img1 = F.avg_pool2d(img1, (2, 2))
img2 = F.avg_pool2d(img2, (2, 2))
ssims = torch.stack(ssims)
mcs = torch.stack(mcs)
#print('nan ssims', torch.isnan(ssims))
#print('nan mcs', torch.isnan(mcs))
# Simple normalize (not compliant with original definition)
# TODO: remove support for normalize == True (kept for backward support)
if normalize == "simple" or normalize == True:
ssims = (ssims + 1) / 2
mcs = (mcs + 1) / 2
pow1 = mcs ** weights
pow2 = ssims ** weights
#print('nan pow1', torch.isnan(pow1))
#print('nan pow2', torch.isnan(pow2))
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
output = torch.prod(pow1[:-1] * pow2[-1])
#print('nan output', torch.isnan(output))
return output
class MSSSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True, channel=3):
super(MSSSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = channel
def forward(self, img1, img2):
# TODO: store window between calls if possible
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
transform = transforms.Compose([transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
from torchvision.transforms.functional import to_tensor
name_num = 0
def computetotalloss(n,out_put,image):
img_rendered = img_get(out_put[n], n)#get rendered image--unit8
img_switch = image_switch(image[n])#normalize--->8unit
#loss_ssim = ssim(img_switch, img_rendered, multichannel=True)
#print(str(epoch) + str(i) + str(j) + '.jpg')
'''
A = img_rendered
B = img_switch
if n==3:
hmerge = np.hstack((A, B))
cv2.imwrite('./test/' + str(epoch) + str(n) + '.jpg', hmerge)
'''
img_rendered = to_tensor(img_rendered).unsqueeze(0).type(torch.FloatTensor)
img_switch = to_tensor(img_switch).unsqueeze(0).type(torch.FloatTensor)
img_rendered.requires_grad =True
img_switch.requires_grad = True
img_rendered = img_rendered.to(device)
img_switch = img_switch.to(device)
#print('nan img_rendered', torch.isnan(img_rendered))
#print('nan img_switch', torch.isnan(img_switch))
test = MSSSIM().cuda()
loss_msssim = test(img_switch,img_rendered)
#print('nan loss_msssim', torch.isnan(loss_msssim))
#if torch.isnan(loss_msssim).item() == True:
#print('yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy')
# hmerge = np.hstack((A, B))
#cv2.imwrite('./test/' + str(epoch) + str(n) + str(n) + '.jpg', hmerge)
#print('1 loss_msssim is :', loss_msssim.grad_fn)
#print(loss_msssim)
#loss_ssim = torch.tensor(1-loss_msssim,requires_grad=True).cuda()
loss_msssim = 1-loss_msssim
#print('3 loss_msssim is :', loss_msssim.is_leaf)
return loss_msssim
###-------define LOSS and optimizer
from torch.optim import lr_scheduler
learning_rate = 0.01
criterion_L1 = nn.L1Loss()
criterion_L2 = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = lr_scheduler.StepLR(optimizer,step_size=50,gamma=0.99)
num_epochs = 5
total_step = len(train_loader)
#total_validation_step = len(test_loader)
import torch.nn.functional as F
image_size = 196608#256x256x3
#x = x.to(device).view(-1, image_size)
#reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
k = 0
if __name__ == '__main__':
#sim.simxFinish(-1)
#clientID = connect(SRV_PORT, "Data generation started")
clientID = vrep.simxStart('127.0.0.1', 19999, True, True, 5000, 5)
object_handles = getObjectsHandles(clientID, objects_names)
print('object_handles is:',object_handles)
model.train()
#mdoel.eval()
# -----train the model-----
for epoch in range(num_epochs):
for i, (images, label) in enumerate(train_loader):
#np.argwhere(np.isnan(label))
images = images.to(device)
label = label.to(device)
#print('output is:',out_put.reshpae(8,2,3))
#output.cuda().data.cpu().numpy()
out_put = model(images)
loss = 0
for j in range(batchsize):
#print('j is:',j)
l = computetotalloss(j,out_put,images)
###获得当前batchsize的图像img
#img_switch = image_switch(images[j])
#img_switch = torch.tensor(img_switch).cuda().data.cpu().numpy().view(-1,image_size)#2
##获得预测位姿下的图像
#img_rendered = img_get(out_put[j],j)
#img_rendered = torch.tensor(img_rendered).cuda().data.cpu().numpy().view(-1,image_size)
#reconst_loss = F.binary_cross_entropy(img_rendered, img_switch, size_average=False)
#l = compute_loss(img_switch,img_rendered)
loss = loss + l
#hmerge = np.hstack((img_switch, img_rendered))
#cv2.imwrite('./save/' +str(epoch)+ str(i)+str(j) + '.jpg', hmerge)
a = loss/batchsize
b = criterion_L1(out_put[:, 0:3], label[:, 0:3]) + criterion_L1(out_put[:, 3:6], label[:,3:6]) # + criterion_L2(out_put, label)
total_loss = a + b
#print('test',label[:,3:6])
#print('out_put', label[:, 0:3])
#total_loss = criterion_L1(out_put[:, 0:3], label[:, 0:3]) + criterion_L1(out_put[:, 3:6], label[:,3:6]) # + criterion_L2(out_put, label)
#total_loss = criterion_L2(out_put[:, 0:3], label[:, 0:3]) + criterion_L2(out_put[:, 3:6], label[:,3:6]) # + criterion_L2(out_put, label)
#print('a is :',a.grad_fn)
##----forward pass
#loss = criterion(out_put, label)
##----backward and optimize
optimizer.zero_grad()
total_loss.backward()
if (i+1) % 100 ==0:
for name, parms in model.named_parameters():
print('----->name:', name, '----->grad_requirs:', parms.requires_grad, \
'----->grad_value:', parms.grad)
optimizer.step()
scheduler.step()
print('Epoch [{}/{}],Step [{}/{}],Loss:{:.6f}'.format(epoch + 1, num_epochs, i + 1, total_step, total_loss.item()))
writer.add_scalar('sim total loss value p=1 scale(0.01-0.05)', total_loss.item(), i + epoch * total_step)
writer.add_scalar('mssim loss value0819', a.item(), i + epoch * total_step)
writer.add_scalar('L1 loss value0819', b.item(), i + epoch * total_step)
'''
#do some test
if (i+1) % 50 == 0:
model.eval()
for n,(images_eval,label_eval) in enumerate(test_loader):
images_eval = images_eval.to(device)
label_eval = label_eval.to(device)
out_put_eval = model(images_eval)
loss_eval = 0
for j in range(batchsize):
l_1 = computetotalloss(j,out_put_eval,images_eval)
loss_eval = loss_eval+l_1
total_loss_eval = loss_eval/batchsize +criterion(out_put_eval,label_eval)
print('EVAL-------',total_loss_eval.item())
#writer.add_scalar('total_loss_eval value', {'train_loss':total_loss.item(),'eval_loss':total_loss_eval.item()}, i + epoch * total_step)
writer.add_scalar('total_loss_eval value',total_loss_eval.item(),n + total_validation_step*k)
k =k+1
'''
writer.close()
torch.save(model, 'model_SIM_0819_scale001.pkl')