@@ -1271,8 +1271,8 @@ \section*{Examples}
12711271import numpy as np
12721272from sklearn.metrics import confusion_matrix
12731273
1274- y_hat = np.array(['norminet', 'dog' , 'norminet' , 'norminet' , 'dog' , 'bird' ])
1275- y = np.array(['dog', 'dog' , 'norminet' , 'norminet' , 'dog' , 'norminet' ])
1274+ y_hat = np.array([[ 'norminet'], [ 'dog'], [ 'norminet'], [ 'norminet'], [ 'dog'], [ 'bird'] ])
1275+ y = np.array([[ 'dog'], [ 'dog'], [ 'norminet'], [ 'norminet'], [ 'dog'], [ 'norminet'] ])
12761276
12771277# Example 1:
12781278## your implementation
@@ -1331,8 +1331,8 @@ \subsection{Instructions:}
13311331\section {Examples: }
13321332\begin {minted }[bgcolor=darcula-back,formatcom=\color {lightgrey},fontsize=\scriptsize ]{python}
13331333import numpy as np
1334- y_hat = np.array(['norminet', 'dog' , 'norminet' , 'norminet' , 'dog' , 'bird' ])
1335- y_true = np.array(['dog', 'dog' , 'norminet' , 'norminet' , 'dog' , 'norminet' ])
1334+ y_hat = np.array([[ 'norminet'], [ 'dog'], [ 'norminet'], [ 'norminet'], [ 'dog'], [ 'bird'] ])
1335+ y_true = np.array([[ 'dog'], [ 'dog'], [ 'norminet'], [ 'norminet'], [ 'dog'], [ 'norminet'] ])
13361336
13371337# Example 1:
13381338confusion_matrix_(y_true, y_hat, df_option=True)
0 commit comments