-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmodel.py
242 lines (211 loc) · 7.24 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""model.py"""
import torch.nn as nn
import torch.nn.init as init
class Discriminator(nn.Module):
def __init__(self, z_dim):
super(Discriminator, self).__init__()
self.z_dim = z_dim
self.net = nn.Sequential(
nn.Linear(z_dim, 1000),
nn.LeakyReLU(0.2, True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, True),
nn.Linear(1000, 2),
)
self.weight_init()
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init
for block in self._modules:
for m in self._modules[block]:
initializer(m)
def forward(self, z):
return self.net(z).squeeze()
class FactorVAE1(nn.Module):
"""Encoder and Decoder architecture for 2D Shapes data."""
def __init__(self, z_dim=10):
super(FactorVAE1, self).__init__()
self.z_dim = z_dim
self.encode = nn.Sequential(
nn.Conv2d(1, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 128, 4, 1),
nn.ReLU(True),
nn.Conv2d(128, 2*z_dim, 1)
)
self.decode = nn.Sequential(
nn.Conv2d(z_dim, 128, 1),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4),
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 1, 4, 2, 1),
)
self.weight_init()
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init
for block in self._modules:
for m in self._modules[block]:
initializer(m)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x, no_dec=False):
stats = self.encode(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar)
if no_dec:
return z.squeeze()
else:
x_recon = self.decode(z).view(x.size())
return x_recon, mu, logvar, z.squeeze()
class FactorVAE2(nn.Module):
"""Encoder and Decoder architecture for 3D Shapes, Celeba, Chairs data."""
def __init__(self, z_dim=10):
super(FactorVAE2, self).__init__()
self.z_dim = z_dim
self.encode = nn.Sequential(
nn.Conv2d(3, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 256, 4, 1),
nn.ReLU(True),
nn.Conv2d(256, 2*z_dim, 1)
)
self.decode = nn.Sequential(
nn.Conv2d(z_dim, 256, 1),
nn.ReLU(True),
nn.ConvTranspose2d(256, 64, 4),
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 3, 4, 2, 1),
)
self.weight_init()
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init
for block in self._modules:
for m in self._modules[block]:
initializer(m)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x, no_dec=False):
stats = self.encode(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar)
if no_dec:
return z.squeeze()
else:
x_recon = self.decode(z)
return x_recon, mu, logvar, z.squeeze()
class FactorVAE3(nn.Module):
"""Encoder and Decoder architecture for 3D Faces data."""
def __init__(self, z_dim=10):
super(FactorVAE3, self).__init__()
self.z_dim = z_dim
self.encode = nn.Sequential(
nn.Conv2d(1, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 256, 4, 1),
nn.ReLU(True),
nn.Conv2d(256, 2*z_dim, 1)
)
self.decode = nn.Sequential(
nn.Conv2d(z_dim, 256, 1),
nn.ReLU(True),
nn.ConvTranspose2d(256, 64, 4),
nn.ReLU(True),
nn.ConvTranspose2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 1, 4, 2, 1),
)
self.weight_init()
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init
for block in self._modules:
for m in self._modules[block]:
initializer(m)
def reparametrize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
def forward(self, x, no_dec=False):
stats = self.encode(x)
mu = stats[:, :self.z_dim]
logvar = stats[:, self.z_dim:]
z = self.reparametrize(mu, logvar)
if no_dec:
return z.squeeze()
else:
x_recon = self.decode(z)
return x_recon, mu, logvar, z.squeeze()
def kaiming_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.fill_(0)
def normal_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.normal_(m.weight, 0, 0.02)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.fill_(0)