-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPaper_trainForSingle.py
173 lines (141 loc) · 6.65 KB
/
Paper_trainForSingle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from Paper_global_vars import global_vars
from torch import optim
import torch.nn.functional as F
import os
import gc
import timm
from datetime import datetime
from torch.cuda.amp import autocast, GradScaler
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from Paper_Tree import *
from torch.utils.data.distributed import DistributedSampler
from Paper_DataSetCIFAR import create_train_loader, create_valid_loader
import torch
import torch.optim as optim
import os
from Paper_global_vars import global_vars
from Paper_Tree import *
from Paper_DataSetCIFAR import create_train_loader, create_valid_loader
from convmixer import ConvMixer
from NeuronBundle import ConvMixerWithNeuronBundles
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
loader_train = create_train_loader(global_vars.dataset, distributed=False)
valid_data = create_valid_loader(global_vars.dataset, distributed=False)
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
print(f"Using device: {device}")
# 初始化模型
#model_class = globals()[global_vars.model_name]
# model = model_class().to(device)
# Initialize the model
model = ConvMixerWithNeuronBundles(32, 8,128, 3, 1, 10).to(device)
optimizer = getattr(optim, global_vars.optimizer)(
model.parameters(),
lr=global_vars.max_lr,
weight_decay=0.001
)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=global_vars.max_lr,
total_steps=global_vars.num_epochs,
pct_start=0.3,
anneal_strategy='cos',
cycle_momentum=True,
base_momentum=0.85,
max_momentum=0.95,
)
best_models = []
best_accuracies = []
# Initialize GradScaler
scaler = GradScaler()
for epoch in range(global_vars.num_epochs):
# Training phase
model.train()
batch_losses = []
train_correct = 0
train_total = 0
for batch_idx, (data, target) in enumerate(loader_train):
data, target = data.to(device), target.to(device)
with autocast():
outputs= model(data)
if hasattr(model, 'isTree') and model.isTree:
if (epoch==0 and batch_idx==0):
print("SequentialDecisionTree")
normalized_probs = outputs / outputs.sum(dim=1, keepdim=True)
batch_loss = torch.sum(-target * torch.log(normalized_probs + 1e-7), dim=-1).mean()
else:
if (epoch==0 and batch_idx==0):
print("single model")
batch_loss = torch.sum(-target * F.log_softmax(outputs, dim=-1), dim=-1).mean()
predicted_labels = outputs.argmax(dim=1)
train_correct += (predicted_labels == target.argmax(dim=1)).sum().item()
train_total += len(target)
scaler.scale(batch_loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
batch_losses.append(batch_loss.item())
if (batch_idx + 1) % 10 == 0:
avg_loss = sum(batch_losses[-10:]) / len(batch_losses[-10:])
print(f"Batches {batch_idx-8}-{batch_idx+1}/{len(loader_train)}: Avg Loss: {avg_loss:.4f}")
print(f"Learning rate: {scheduler.get_last_lr()[0]:.6f}")
batch_losses = []
scheduler.step()
train_accuracy = train_correct / train_total if train_total > 0 else 0
print(f"Epoch {epoch+1}/{global_vars.num_epochs} - Train Accuracy: {train_accuracy:.4f}({train_correct}/{train_total})")
# Validation phase
model.eval()
total_correct = 0
total_samples = 0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(valid_data):
data, target = data.to(device), target.to(device)
outputs = model(data)
predicted_labels = outputs.argmax(dim=1)
total_correct += (predicted_labels == target).sum().item()
total_samples += len(target)
accuracy = total_correct / total_samples
print(f"Test Accuracy: {accuracy:.4f}({total_correct}/{total_samples})")
# 保存前十个最佳模型
if len(best_models) < 10 or accuracy > min(best_accuracies):
# 保存模型和优化器
checkpoint = {
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'accuracy': accuracy,
'epoch': epoch + 1
}
if len(best_models) == 10:
# 移除准确率最低的模型
min_acc_index = best_accuracies.index(min(best_accuracies))
min_acc = best_accuracies[min_acc_index]
# 删除文件系统中的模型文件
for filename in os.listdir(global_vars.save_path):
if filename.startswith("checkpoint_") and filename.endswith(f"acc_{min_acc:.4f}.pth"):
os.remove(os.path.join(global_vars.save_path, filename))
print(f"Removed file: {filename}")
best_models.pop(min_acc_index)
best_accuracies.pop(min_acc_index)
best_models.append(checkpoint)
best_accuracies.append(accuracy)
# 按准确率降序排序
best_models, best_accuracies = zip(*sorted(zip(best_models, best_accuracies),
key=lambda x: x[1], reverse=True))
best_models = list(best_models)
best_accuracies = list(best_accuracies)
# 保存模型和优化器
save_path_checkpoint = os.path.join(global_vars.save_path, f"checkpoint_epoch_{epoch+1}_acc_{accuracy:.4f}.pth")
os.makedirs(global_vars.save_path, exist_ok=True)
torch.save(checkpoint, save_path_checkpoint)
print(f"Saved checkpoint to {save_path_checkpoint}")
# 训练结束后,打印最佳模型信息
print("\nTop 10 Best Models:")
for i, checkpoint in enumerate(best_models, 1):
print(f"{i}. Epoch: {checkpoint['epoch']}, Accuracy: {checkpoint['accuracy']:.4f}")