-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
175 lines (142 loc) · 6.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import torch
torch.backends.cudnn.benchmark = True
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp
import torch.distributed as dist
from einops import repeat, rearrange
from dot.data.movi_f_dataset import create_point_tracking_dataset
from dot.utils.io import create_folder
from dot.utils.torch import reduce, to_device
from dot.utils.log import Logger
from dot.models import create_model
from dot.utils.options.train_options import TrainOptions
def checkpoint(model, optimizer, path, name):
create_folder(path)
model_path = os.path.join(path, f"{name}.pth")
optimizer_path = os.path.join(path, f"{name}_optimizer.pth")
torch.save(model.module.model.state_dict(), model_path)
torch.save(optimizer.state_dict(), optimizer_path)
def sample(pred, gt):
B, I, H, W, _ = pred["flow"].shape
dense = torch.cat([pred["flow"], pred["alpha"][..., None]], dim=-1)
dense = rearrange(dense, "b i h w c -> b (i c) h w")
src_pos = gt["out_src_points"][..., :2]
grid = src_pos[:, None] * 2 - 1
sparse = torch.nn.functional.grid_sample(dense, grid, mode="nearest", align_corners=True, padding_mode="border")
sparse = rearrange(sparse, "b (i c) h w -> b i (h w) c", i=I)
delta_pos, tgt_alpha = sparse[..., :2], sparse[..., 2:]
delta_pos[..., 0] = delta_pos[..., 0] / (W - 1)
delta_pos[..., 1] = delta_pos[..., 1] / (H - 1)
tgt_pos = src_pos[:, None] + delta_pos
out_tgt_points = torch.cat([tgt_pos, tgt_alpha], dim=-1)
pred = {
"flow": pred["flow"][:, -1],
"alpha": pred["alpha"][:, -1],
"out_tgt_points": out_tgt_points
}
return pred
def step(loader, model, optimizer, logger, global_iter, args):
if optimizer is not None:
optimizer.zero_grad()
loss = torch.tensor(0., requires_grad=True).cuda()
gt = loader.next()
gt = to_device(gt, args.rank)
pred = model(gt, mode="flow_with_tracks_init", **vars(args))
pred = sample(pred, gt)
motion_loss = torch.tensor(0., requires_grad=True).cuda()
visibility_loss = torch.tensor(0., requires_grad=True).cuda()
gamma = 0.8
num_iter = pred["out_tgt_points"].size(1)
for i in range(num_iter):
weight = gamma ** (num_iter - i - 1)
pred_pos, pred_vis = pred["out_tgt_points"][:, i][..., :2], pred["out_tgt_points"][:, i][..., 2]
gt_pos, gt_vis = gt["out_tgt_points"][..., :2], gt["out_tgt_points"][..., 2]
motion_loss += weight * (gt_pos - pred_pos).abs().mean()
visibility_loss += weight * torch.nn.functional.binary_cross_entropy(pred_vis, gt_vis)
loss += motion_loss * args.lambda_motion_loss
loss += visibility_loss * args.lambda_visibility_loss
if optimizer is not None:
loss.backward()
optimizer.step()
if args.rank == 0 and logger is not None:
logger.log_scalar("motion_loss", motion_loss, global_iter)
logger.log_scalar("visibility_loss", visibility_loss, global_iter)
logger.log_scalar("loss", loss, global_iter)
if global_iter % args.print_iter == 0:
losses = f"Loss: {loss.item():.3E} ("
losses += f"motion: {motion_loss.item():.3E}, "
losses += f"visibility: {visibility_loss.item():.3E})"
epoch = loader.epoch
print(f"[E{epoch:02d} I{global_iter}/{args.train_iter}] {losses}")
if global_iter % args.log_iter == 0:
logger.log_image("pred_flow", pred["flow"], "flow", 2, global_iter)
logger.log_image("pred_alpha", pred["alpha"], "mask", 2, global_iter)
logger.log_image("tgt_frame", gt["tgt_frame"], "rgb", 2, global_iter)
logger.log_image("src_frame", gt["src_frame"], "rgb", 2, global_iter)
return loss
def setup(rank, world_size, master_port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = master_port
dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def main(rank, args):
print(f"Running DOT on rank {rank + 1} / {args.world_size}.")
setup(rank, args.world_size, args.master_port)
args.rank = rank
logger = Logger(args) if args.rank == 0 else None
# Prepare data
train_dataset = create_point_tracking_dataset(
args,
batch_size=args.batch_size,
split="train",
verbose=args.rank == 0
)
if args.rank == 0:
valid_dataset = create_point_tracking_dataset(
args,
batch_size=args.batch_size_valid,
split="valid",
verbose=args.rank == 0,
num_workers=1
)
# Load model and optimizer
model = create_model(args).cuda()
model = DDP(model, device_ids=[args.rank], output_device=args.rank)
model.train()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, betas=(0, 0.99))
if args.optimizer_path is not None:
optimizer.load_state_dict(torch.load(args.optimizer_path))
min_loss = None
for global_iter in range(args.train_iter + 1):
step(train_dataset, model, optimizer, logger, global_iter, args)
if args.rank == 0 and global_iter % args.save_iter == 0:
checkpoint(model, optimizer, args.checkpoint_path, "last")
if args.valid_iter > 0 and global_iter % args.valid_iter == 0:
if args.rank == 0:
model.eval()
losses = []
with torch.no_grad():
for _ in range(args.num_valid_batches):
losses.append(step(valid_dataset, model.module, None, None, global_iter, args))
valid_dataset.reinit() # Make sure we always use the same validation data
loss = torch.stack(losses).mean()
status = ""
if min_loss is None or loss < min_loss:
min_loss = loss
checkpoint(model, optimizer, args.checkpoint_path, "best")
status = "(best)"
logger.log_scalar("valid/loss", loss.item(), global_iter)
print(f"[I{global_iter}/{args.train_iter}] Validation loss: {loss:.3E} {status}")
model.train()
dist.barrier()
cleanup()
if __name__ == "__main__":
args = TrainOptions().parse_args()
mp.spawn(main,
args=(args,),
nprocs=args.world_size,
join=True)
print("Done.")